Question Number 35732 by ajfour last updated on 22/May/18
Commented by ajfour last updated on 22/May/18
$${Find}\:{moment}\:{of}\:{inertia}\:{of}\:{disc} \\ $$$${about}\:{an}\:{axis},\:{as}\:{in}\:{figure}\:{above}, \\ $$$${if}\:{density}\:{of}\:{disc}\:{be}\:{proportional} \\ $$$${to}\:\mathrm{sin}\:\theta\:. \\ $$
Answered by ajfour last updated on 23/May/18
$${chord}\:{length}\:{at}\:{angle}\:\theta\:{is} \\ $$$$\:\:\:\:\rho=\:\mathrm{2}{R}\mathrm{sin}\:\theta \\ $$$${let}\:{areal}\:{density}\:{be}\:\delta={k}\mathrm{sin}\:\theta \\ $$$${dI}=\left({r}\mathrm{sin}\:\theta\right)^{\mathrm{2}} {dm}\:\:\:;\:{r}\:{being}\:{distance}\:{of} \\ $$$${a}\:{mass}\:{element}\:{from}\:{point}\:{of} \\ $$$${tangency}\:{of}\:{disc}\:{with}\:{axis}\:{of} \\ $$$${rotation}. \\ $$$$\int{dI}=\int_{\mathrm{0}} ^{\:\:\pi} \int_{\mathrm{0}} ^{\:\:\rho} \left({r}\mathrm{sin}\:\theta\right)^{\mathrm{2}} \left({k}\mathrm{sin}\:\theta\right)\left({rd}\theta\right){dr} \\ $$$$\:\:\:\:\:\:\:=\:{k}\int_{\mathrm{0}} ^{\:\:\pi} \left[\left(\mathrm{sin}\:^{\mathrm{3}} \theta\right)\int_{\mathrm{0}} ^{\:\:\rho} {r}^{\mathrm{3}} {dr}\right]{d}\theta \\ $$$$\:\:\:\:\:\:\:=\:{k}\int_{\mathrm{0}} ^{\:\:\pi} \left(\mathrm{sin}\:^{\mathrm{3}} \theta\right)\left(\frac{\rho^{\mathrm{4}} }{\mathrm{4}}\right){d}\theta \\ $$$$\:\:\:\:\:\:\:{as}\:\rho=\mathrm{2}{R}\mathrm{sin}\:\theta,\:{we}\:{have} \\ $$$$\:\:\:\:{I}=\:\mathrm{4}{kR}^{\:\mathrm{4}} \int_{\mathrm{0}} ^{\:\:\pi} \mathrm{sin}\:^{\mathrm{7}} \theta{d}\theta \\ $$$$\:\:\:\:\:\:=−\mathrm{4}{kR}^{\:\mathrm{4}} \int_{\mathrm{0}} ^{\:\:\pi} \left(\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \theta\right)^{\mathrm{3}} \left(−\mathrm{sin}\:\theta{d}\theta\right) \\ $$$${let}\:\:\mathrm{cos}\:\theta\:={t}\:\:\:\:\Rightarrow\:\:−\mathrm{sin}\:\theta{d}\theta={dt} \\ $$$$\:\:\:\:\:\:{I}\:=−\mathrm{4}{kR}^{\:\mathrm{4}} \int_{\mathrm{1}} ^{\:\:−\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{\mathrm{3}} {dt} \\ $$$$\:\:\:\:\:\:\:\:\:=\:\mathrm{8}{R}^{\:\mathrm{2}} {k}\int_{\mathrm{0}} ^{\:\:\mathrm{1}} \left(\mathrm{1}−\mathrm{3}{t}^{\mathrm{2}} +\mathrm{3}{t}^{\mathrm{4}} −{t}^{\mathrm{6}} \right){dt} \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{8}{kR}^{\:\mathrm{4}} \left[{t}−{t}^{\mathrm{3}} +\frac{\mathrm{3}{t}^{\mathrm{5}} }{\mathrm{5}}−\frac{{t}^{\mathrm{7}} }{\mathrm{7}}\right]\mid_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\Rightarrow\:\:\:\:{I}=\mathrm{8}{kR}^{\:\mathrm{4}} \left(\frac{\mathrm{16}}{\mathrm{35}}\right) \\ $$$${or}\:\:\:\:\:\boldsymbol{{I}}=\:\frac{\mathrm{128}\boldsymbol{{kR}}^{\:\mathrm{4}} }{\mathrm{35}}\:. \\ $$