Question Number 36128 by mondodotto@gmail.com last updated on 29/May/18
$$\int\boldsymbol{\mathrm{sin}}^{\mathrm{8}} \boldsymbol{{xdx}} \\ $$$$\int\boldsymbol{\mathrm{sin}}^{\mathrm{6}} \boldsymbol{{xdx}} \\ $$
Commented by Joel579 last updated on 29/May/18
Commented by abdo mathsup 649 cc last updated on 29/May/18
$$\int\:{sin}^{\mathrm{8}} {xdx}\:=\:\int\left(\:\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}\right)^{\mathrm{4}} {dx} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{32}}\:\int\:\:\:\left({cos}^{\mathrm{2}} \left(\mathrm{2}{x}\right)−\mathrm{2}{cos}\left(\mathrm{2}{x}\right)+\mathrm{1}\right)^{\mathrm{2}} {dx} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{32}}\int\:\left(\:\frac{\mathrm{1}+{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}\:−\mathrm{2}{cos}\left(\mathrm{2}{x}\right)\:+\mathrm{1}\right)^{\mathrm{2}} {dx} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{64}}\:\int\:\:\left(\mathrm{1}+{cos}\left(\mathrm{2}{x}\right)−\mathrm{4}{cos}\left(\mathrm{2}{x}\right)\:+\mathrm{2}\right)^{\mathrm{2}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{64}}\:\int\:\left(\mathrm{3}\:−\mathrm{3}\:{cos}\left(\mathrm{2}{x}\right)\right)^{\mathrm{2}} {dx} \\ $$$$=\frac{\mathrm{9}}{\mathrm{64}}\:\int\:\:\left({cos}^{\mathrm{2}} \left(\mathrm{2}{x}\right)\:−\mathrm{2}{cos}\left(\mathrm{2}{x}\right)\:+\mathrm{1}\right){dx} \\ $$$$=\frac{\mathrm{9}}{\mathrm{64}}\int\:\:\left(\:\:\frac{\mathrm{1}+{cos}\left(\mathrm{4}{x}\right)}{\mathrm{2}}\:−\mathrm{2}\:{cos}\left(\mathrm{2}{x}\right)\:+\mathrm{1}\right){dx} \\ $$$$=\:\frac{\mathrm{9}}{\mathrm{128}}\:\int\:\left\{\:\:\mathrm{1}+{cos}\left(\mathrm{4}{x}\right)\:−\mathrm{4}{cos}\left(\mathrm{2}{x}\right)\:+\mathrm{2}\right\}{dx} \\ $$$$=\frac{\mathrm{9}}{\mathrm{128}}\int\:\left\{\:{cos}\left(\mathrm{4}{x}\right)\:−\mathrm{4}\:{cos}\left(\mathrm{2}{x}\right)\:+\mathrm{3}\right\}{dx} \\ $$$$=\:\:\:\frac{\mathrm{9}}{\mathrm{4}.\mathrm{128}}\:{sin}\left(\mathrm{4}{x}\right)\:−\frac{\mathrm{18}}{\mathrm{128}}{sin}\left(\mathrm{2}{x}\right)\:+\frac{\mathrm{27}}{\mathrm{128}}\:+{c}\: \\ $$$$ \\ $$
Commented by abdo mathsup 649 cc last updated on 29/May/18
$$\int\:{sin}^{\mathrm{6}} {xdx}\:=\:\int\:\left(\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{3}}\right)^{\mathrm{3}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{27}}\int\:\:\left(\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)\right)^{\mathrm{2}} \left(\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)\right){dx} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{27}}\:\int\:\:\left(\:\mathrm{1}−\mathrm{2}{cos}\left(\mathrm{2}{x}\right)\:+{cos}^{\mathrm{2}} \left(\mathrm{2}{x}\right)\right)\left(\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)\right){dx} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{27}}\:\int\:\left(\:\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)\:+\frac{\mathrm{1}+{cos}\left(\mathrm{4}{x}\right)}{\mathrm{2}}\right)\left(\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)\right){dx} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{54}}\:\int\:\:\left(\:\mathrm{3}−\mathrm{2}{cos}\left(\mathrm{2}{x}\right)\:+{cos}\left(\mathrm{4}{x}\right)\right)\left(\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)\right){dx} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{54}}\:\int\:\:\left(\mathrm{3}−\mathrm{2}{cos}\left(\mathrm{2}{x}\right)\:+{cos}\left(\mathrm{4}{x}\right)\right){dx} \\ $$$$−\frac{\mathrm{1}}{\mathrm{54}}\:\:\int\:\:\left(\mathrm{3}−\mathrm{2}{cos}\left(\mathrm{2}{x}\right)\:+{cos}\left(\mathrm{4}{x}\right)\right){cos}\left(\mathrm{2}{x}\right){dx} \\ $$$$=\:\frac{\mathrm{3}}{\mathrm{54}}{x}\:\:−\frac{\mathrm{1}}{\mathrm{54}}\:{sin}\left(\mathrm{2}{x}\right)\:+\frac{\mathrm{1}}{\mathrm{216}}\:{sin}\left(\mathrm{4}{x}\right) \\ $$$$−\frac{\mathrm{3}}{\mathrm{54}}\:\int\:{cos}\left(\mathrm{2}{x}\right){dx}\:\:+\frac{\mathrm{2}}{\mathrm{54}}\:\int\:{cos}^{\mathrm{2}} \left(\mathrm{2}{x}\right){dx} \\ $$$$−\frac{\mathrm{1}}{\mathrm{54}}\:\int\:\:\:{cos}\left(\mathrm{2}{x}\right){cos}\left(\mathrm{4}{x}\right){dx} \\ $$$$=…. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 29/May/18
Answered by tanmay.chaudhury50@gmail.com last updated on 29/May/18
Answered by tanmay.chaudhury50@gmail.com last updated on 29/May/18