Menu Close

let-F-x-0-e-x-2-t-t-1-t-2-dt-calculate-lim-x-F-x-




Question Number 36189 by prof Abdo imad last updated on 30/May/18
let F(x)=∫_0 ^∞     ((e^(−x^2 t) (√t))/(1+t^2 ))dt  calculate lim_(x→+∞)  F(x) .
$${let}\:{F}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{e}^{−{x}^{\mathrm{2}} {t}} \sqrt{{t}}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$${calculate}\:{lim}_{{x}\rightarrow+\infty} \:{F}\left({x}\right)\:. \\ $$$$ \\ $$
Commented by math khazana by abdo last updated on 18/Aug/18
changement (√t)=u give  F(x) = ∫_0 ^∞    ((e^(−x^2 u^2 )   u)/(1+u^4 )) (2u)du  = 2 ∫_0 ^∞      ((u^2   e^(−x^2 u^2 ) )/(1+u^4 )) du  =_(xu = α)   2 ∫_0 ^∞    (α^2 /x^2 )  (e^(−α^2 ) /(1+(α^4 /x^4 )))  (1/x) dα  =2 ∫_0 ^∞       ((α^2  e^(−α^2 ) )/(x^3  +(α^4 /x)))dα =2x ∫_0 ^∞    ((α^2  e^(−α^2 ) )/(x^4  +α^4 )) dα  ⇒ F(x) ≤(2/x^3 ) ∫_0 ^∞   α^2  e^(−α^2 ) dα  but ∫_0 ^∞   α^2  e^(−α^2 ) dα   converges ⇒ lim_(x→+∞) F(x)=0 .
$${changement}\:\sqrt{{t}}={u}\:{give} \\ $$$${F}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−{x}^{\mathrm{2}} {u}^{\mathrm{2}} } \:\:{u}}{\mathrm{1}+{u}^{\mathrm{4}} }\:\left(\mathrm{2}{u}\right){du} \\ $$$$=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{u}^{\mathrm{2}} \:\:{e}^{−{x}^{\mathrm{2}} {u}^{\mathrm{2}} } }{\mathrm{1}+{u}^{\mathrm{4}} }\:{du} \\ $$$$=_{{xu}\:=\:\alpha} \:\:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\alpha^{\mathrm{2}} }{{x}^{\mathrm{2}} }\:\:\frac{{e}^{−\alpha^{\mathrm{2}} } }{\mathrm{1}+\frac{\alpha^{\mathrm{4}} }{{x}^{\mathrm{4}} }}\:\:\frac{\mathrm{1}}{{x}}\:{d}\alpha \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{\alpha^{\mathrm{2}} \:{e}^{−\alpha^{\mathrm{2}} } }{{x}^{\mathrm{3}} \:+\frac{\alpha^{\mathrm{4}} }{{x}}}{d}\alpha\:=\mathrm{2}{x}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\alpha^{\mathrm{2}} \:{e}^{−\alpha^{\mathrm{2}} } }{{x}^{\mathrm{4}} \:+\alpha^{\mathrm{4}} }\:{d}\alpha \\ $$$$\Rightarrow\:{F}\left({x}\right)\:\leqslant\frac{\mathrm{2}}{{x}^{\mathrm{3}} }\:\int_{\mathrm{0}} ^{\infty} \:\:\alpha^{\mathrm{2}} \:{e}^{−\alpha^{\mathrm{2}} } {d}\alpha\:\:{but}\:\int_{\mathrm{0}} ^{\infty} \:\:\alpha^{\mathrm{2}} \:{e}^{−\alpha^{\mathrm{2}} } {d}\alpha\: \\ $$$${converges}\:\Rightarrow\:{lim}_{{x}\rightarrow+\infty} {F}\left({x}\right)=\mathrm{0}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *