Menu Close

calculate-0-pi-2-d-1-2sin-2-




Question Number 36201 by prof Abdo imad last updated on 30/May/18
calculate ∫_0 ^(π/2)    (dθ/(1+2sin^2 θ))
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{d}\theta}{\mathrm{1}+\mathrm{2}{sin}^{\mathrm{2}} \theta} \\ $$
Commented by prof Abdo imad last updated on 01/Jun/18
let put I = ∫_0 ^(π/2)      (dθ/(1+2sin^2 θ))  I = ∫_0 ^(π/2)     (dθ/(1 +2((1−cos(2θ))/2))) =∫_0 ^(π/2)   (dθ/(2−cos(2θ)))  =_(2θ=t)   ∫_0 ^π      (1/(2 −cos(t))) (dt/2)  =_(tan((t/2))=x)  ∫_0 ^(+∞)       (1/(2{2−((1−x^2 )/(1+x^2 ))})) ((2dx)/(1+x^2 ))  = ∫_0 ^(+∞)      (dx/(2(1+x^2 ) −1+x^2 ))  =∫_0 ^(+∞)      (dx/(1 +3x^2 )) changement  x(√3) =u give  I = ∫_0 ^∞     (1/(1+u^2 )) (du/( (√3))) = (1/( (√3))) (π/2) ⇒ I = (π/(2(√3))) .
$${let}\:{put}\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{d}\theta}{\mathrm{1}+\mathrm{2}{sin}^{\mathrm{2}} \theta} \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{d}\theta}{\mathrm{1}\:+\mathrm{2}\frac{\mathrm{1}−{cos}\left(\mathrm{2}\theta\right)}{\mathrm{2}}}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{d}\theta}{\mathrm{2}−{cos}\left(\mathrm{2}\theta\right)} \\ $$$$=_{\mathrm{2}\theta={t}} \:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}\:−{cos}\left({t}\right)}\:\frac{{dt}}{\mathrm{2}} \\ $$$$=_{{tan}\left(\frac{{t}}{\mathrm{2}}\right)={x}} \:\int_{\mathrm{0}} ^{+\infty} \:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}\left\{\mathrm{2}−\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }\right\}}\:\frac{\mathrm{2}{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$=\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\:\:\frac{{dx}}{\mathrm{2}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:−\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$=\int_{\mathrm{0}} ^{+\infty} \:\:\:\:\:\frac{{dx}}{\mathrm{1}\:+\mathrm{3}{x}^{\mathrm{2}} }\:{changement}\:\:{x}\sqrt{\mathrm{3}}\:={u}\:{give} \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\frac{{du}}{\:\sqrt{\mathrm{3}}}\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:\frac{\pi}{\mathrm{2}}\:\Rightarrow\:{I}\:=\:\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\:. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *