Menu Close

Question-167295




Question Number 167295 by mnjuly1970 last updated on 12/Mar/22
Answered by qaz last updated on 12/Mar/22
lim_(n→∞) ((((2n)!)/(n^n n!)))^(1/n)   =lim_(n→∞) (((2n)!)/(n^n n!))∙(((n−1)^(n−1) (n−1)!)/((2n−2)!))  =lim_(n→∞) ((2(2n−1))/(n−1))(1−(1/n))^n   =4e^(−1)
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\left(\mathrm{2n}\right)!}{\mathrm{n}^{\mathrm{n}} \mathrm{n}!}\right)^{\mathrm{1}/\mathrm{n}} \\ $$$$=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\left(\mathrm{2n}\right)!}{\mathrm{n}^{\mathrm{n}} \mathrm{n}!}\centerdot\frac{\left(\mathrm{n}−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} \left(\mathrm{n}−\mathrm{1}\right)!}{\left(\mathrm{2n}−\mathrm{2}\right)!} \\ $$$$=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{2}\left(\mathrm{2n}−\mathrm{1}\right)}{\mathrm{n}−\mathrm{1}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{n}}\right)^{\mathrm{n}} \\ $$$$=\mathrm{4e}^{−\mathrm{1}} \\ $$
Answered by Mathspace last updated on 13/Mar/22
n!∼ n^n e^(−n) (√(2πn))  (2n)!∼(2n)^(2n ) e^(−2n) (√(4πn)) ⇒  (((2n)!)/(n^n .n!))=((4^n n^(2n)  e^(−2n) 2(√(πn)))/(n^n n^n  e^(−n) (√(2πn))))  =(√2).4^n  .e^(−n)  ⇒  ((((2n)!)/(n^n n!)))^(1/n) ∼((√2))^(1/n) .4.e^(−1) →(4/e) ⇒  lim_(n→+∞) ((((2n)!)/(n^n n!)))^(1/n) =(4/e)
$${n}!\sim\:{n}^{{n}} {e}^{−{n}} \sqrt{\mathrm{2}\pi{n}} \\ $$$$\left(\mathrm{2}{n}\right)!\sim\left(\mathrm{2}{n}\right)^{\mathrm{2}{n}\:} {e}^{−\mathrm{2}{n}} \sqrt{\mathrm{4}\pi{n}}\:\Rightarrow \\ $$$$\frac{\left(\mathrm{2}{n}\right)!}{{n}^{{n}} .{n}!}=\frac{\mathrm{4}^{{n}} {n}^{\mathrm{2}{n}} \:{e}^{−\mathrm{2}{n}} \mathrm{2}\sqrt{\pi{n}}}{{n}^{{n}} {n}^{{n}} \:{e}^{−{n}} \sqrt{\mathrm{2}\pi{n}}} \\ $$$$=\sqrt{\mathrm{2}}.\mathrm{4}^{{n}} \:.{e}^{−{n}} \:\Rightarrow \\ $$$$\left(\frac{\left(\mathrm{2}{n}\right)!}{{n}^{{n}} {n}!}\right)^{\frac{\mathrm{1}}{{n}}} \sim\left(\sqrt{\mathrm{2}}\right)^{\frac{\mathrm{1}}{{n}}} .\mathrm{4}.{e}^{−\mathrm{1}} \rightarrow\frac{\mathrm{4}}{{e}}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \left(\frac{\left(\mathrm{2}{n}\right)!}{{n}^{{n}} {n}!}\right)^{\frac{\mathrm{1}}{{n}}} =\frac{\mathrm{4}}{{e}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *