Question Number 101871 by bemath last updated on 05/Jul/20
$${if}\:{a}_{\mathrm{1}} =\:−\mathrm{4}\:,\:{a}_{\mathrm{2}} =−\mathrm{1}\:{and}\: \\ $$$${a}_{{n}} \:=\:{a}_{{n}+\mathrm{1}} +{a}_{{n}+\mathrm{3}\:} .\:{find}\: \\ $$$${a}_{\mathrm{4}} −{a}_{\mathrm{1}} ? \\ $$
Answered by Rasheed.Sindhi last updated on 05/Jul/20
$${a}_{\mathrm{1}} =\:−\mathrm{4}\:,\:{a}_{\mathrm{2}} =−\mathrm{1} \\ $$$${a}_{{n}} \:=\:{a}_{{n}+\mathrm{1}} +{a}_{{n}+\mathrm{3}\:} …….{A} \\ $$$${a}_{\mathrm{4}} −{a}_{\mathrm{1}} =? \\ $$$$−−−−−−−−−−− \\ $$$${n}=\mathrm{1} \\ $$$${A}\Rightarrow{a}_{\mathrm{1}} ={a}_{\mathrm{2}} +{a}_{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:{a}_{\mathrm{4}} −{a}_{\mathrm{1}} =−{a}_{\mathrm{2}} =−\left(−\mathrm{1}\right)=\mathrm{1}\bigstar \\ $$
Commented by bemath last updated on 05/Jul/20
$${typo}\:{sir}.\:{a}_{\mathrm{4}} −{a}_{\mathrm{1}} =−{a}_{\mathrm{2}} \:? \\ $$
Commented by Rasheed.Sindhi last updated on 05/Jul/20
$${Yes}\:{sir},\:{corrected}. \\ $$
Commented by mr W last updated on 05/Jul/20
$${we}\:{only}\:{know}\:{the}\:{terms}\:{a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,{a}_{\mathrm{4}} , \\ $$$${we}\:{can}\:{not}\:{determine}\:{the}\:{other}\:{terms}. \\ $$