Menu Close

Question-36365




Question Number 36365 by chakraborty ankit last updated on 01/Jun/18
Commented by tanmay.chaudhury50@gmail.com last updated on 01/Jun/18
repost question no 11 and 12
$${repost}\:{question}\:{no}\:\mathrm{11}\:{and}\:\mathrm{12} \\ $$
Commented by chakraborty ankit last updated on 02/Jun/18
ok sir
$${ok}\:{sir} \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Jun/18
      s_n =2+3+6+11+18+...+T_(n−1) +T_n           s_n =     2+3+6+11+...+T_(n−2) +T_(n−1) +T_n   shifting one place rivhtward then subsgructing  0=2+(1+3+5+7+...−T_n )  T_n =2+((n−1)/2){2×1+(n−1−1)×2}  T_n =2+((n−1)/2){2n−2}  T_n =2+(n−1)(n−1)  T_n =n^2 −2n+3  T_(50) =50^2 −2×50+3  =2500−100+3  =2403  49^2 +2 is ans
$$\:\:\:\:\:\:{s}_{{n}} =\mathrm{2}+\mathrm{3}+\mathrm{6}+\mathrm{11}+\mathrm{18}+…+{T}_{{n}−\mathrm{1}} +{T}_{{n}} \\ $$$$\:\:\:\:\:\:\:\:{s}_{{n}} =\:\:\:\:\:\mathrm{2}+\mathrm{3}+\mathrm{6}+\mathrm{11}+…+{T}_{{n}−\mathrm{2}} +{T}_{{n}−\mathrm{1}} +{T}_{{n}} \\ $$$${shifting}\:{one}\:{place}\:{rivhtward}\:{then}\:{subsgructing} \\ $$$$\mathrm{0}=\mathrm{2}+\left(\mathrm{1}+\mathrm{3}+\mathrm{5}+\mathrm{7}+…−{T}_{{n}} \right) \\ $$$${T}_{{n}} =\mathrm{2}+\frac{{n}−\mathrm{1}}{\mathrm{2}}\left\{\mathrm{2}×\mathrm{1}+\left({n}−\mathrm{1}−\mathrm{1}\right)×\mathrm{2}\right\} \\ $$$${T}_{{n}} =\mathrm{2}+\frac{{n}−\mathrm{1}}{\mathrm{2}}\left\{\mathrm{2}{n}−\mathrm{2}\right\} \\ $$$${T}_{{n}} =\mathrm{2}+\left({n}−\mathrm{1}\right)\left({n}−\mathrm{1}\right) \\ $$$${T}_{{n}} ={n}^{\mathrm{2}} −\mathrm{2}{n}+\mathrm{3} \\ $$$${T}_{\mathrm{50}} =\mathrm{50}^{\mathrm{2}} −\mathrm{2}×\mathrm{50}+\mathrm{3} \\ $$$$=\mathrm{2500}−\mathrm{100}+\mathrm{3} \\ $$$$=\mathrm{2403} \\ $$$$\mathrm{49}^{\mathrm{2}} +\mathrm{2}\:{is}\:{ans} \\ $$$$\: \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *