Menu Close

Consider-triangle-ABC-If-206-lines-are-drawn-from-A-to-BC-how-many-triangles-are-formed-




Question Number 36398 by NECx last updated on 01/Jun/18
Consider triangle ABC.If 206  lines are drawn from A to BC how  many triangles are formed?
$${Consider}\:{triangle}\:{ABC}.{If}\:\mathrm{206} \\ $$$${lines}\:{are}\:{drawn}\:{from}\:{A}\:{to}\:{BC}\:{how} \\ $$$${many}\:{triangles}\:{are}\:{formed}? \\ $$
Commented by Rasheed.Sindhi last updated on 02/Jun/18
207+206+...+1=((207×208)/2)=21528  (including △ABC)
$$\mathrm{207}+\mathrm{206}+…+\mathrm{1}=\frac{\mathrm{207}×\mathrm{208}}{\mathrm{2}}=\mathrm{21528} \\ $$$$\left(\mathrm{including}\:\bigtriangleup\mathrm{ABC}\right) \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Jun/18
total lines206+AB+AC+BC  total points on BC for these 206 lines=206  total points in BC=2o6+pointB and C  any two points out of these206 +2=2o8 points  when join withpoint A...make  triangle   so number of  triangles=2o8C_2 −1  heree 1 substructed for triangle ABC
$${total}\:{lines}\mathrm{206}+{AB}+{AC}+{BC} \\ $$$${total}\:{points}\:{on}\:{BC}\:{for}\:{these}\:\mathrm{206}\:{lines}=\mathrm{206} \\ $$$${total}\:{points}\:{in}\:{BC}=\mathrm{2}{o}\mathrm{6}+{pointB}\:{and}\:{C} \\ $$$${any}\:{two}\:{points}\:{out}\:{of}\:{these}\mathrm{206}\:+\mathrm{2}=\mathrm{2}{o}\mathrm{8}\:{points} \\ $$$${when}\:{join}\:{withpoint}\:{A}…{make} \\ $$$${triangle}\: \\ $$$${so}\:{number}\:{of}\:\:{triangles}=\mathrm{2}{o}\mathrm{8}{C}_{\mathrm{2}} −\mathrm{1} \\ $$$${heree}\:\mathrm{1}\:{substructed}\:{for}\:{triangle}\:{ABC} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *