Question Number 36406 by abdo mathsup 649 cc last updated on 01/Jun/18
$${find}\:{the}\:{values}\:{of}\:\:{I}\:=\:\int_{\mathrm{0}} ^{\pi} {cos}^{\mathrm{4}} {dx}\:{and} \\ $$$${J}\:=\:\int_{\mathrm{0}} ^{\pi} \:{sin}^{\mathrm{4}} {dx}\:. \\ $$
Commented by abdo.msup.com last updated on 05/Jun/18
$${we}\:{have}\:\:{I}\:+{J}\:=\int_{\mathrm{0}} ^{\pi} \:\left({cos}^{\mathrm{4}} {x}\:+{sin}^{\mathrm{4}} {x}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\pi} \:\:\left\{\left({cos}^{\mathrm{2}} {x}\:+{sin}^{\mathrm{2}} {x}\right)^{\mathrm{2}} \:−\mathrm{2}{cos}^{\mathrm{2}} {xsin}^{\mathrm{2}} {x}\right\}{dx} \\ $$$$=\pi\:−\mathrm{2}\:\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{1}}{\mathrm{4}}\left({sin}\left(\mathrm{2}{x}\right)\right)^{\mathrm{2}} {dx} \\ $$$$=\pi\:−\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{\mathrm{1}−{cos}\left(\mathrm{4}{x}\right)}{\mathrm{2}}{dx} \\ $$$$=\pi\:−\frac{\pi}{\mathrm{4}}\:+\:\frac{\mathrm{1}}{\mathrm{16}}\left[{sin}\left(\mathrm{4}{x}\right)\right]_{\mathrm{0}} ^{\pi} \:=\frac{\mathrm{3}\pi}{\mathrm{4}}\:{also} \\ $$$${I}\:−{J}\:=\:\int_{\mathrm{0}} ^{\pi} \:\left({cos}^{\mathrm{4}} {x}\:−{sin}^{\mathrm{4}} {x}\right){dx} \\ $$$$=\:\int_{\mathrm{0}} ^{\pi} \:{cos}^{\mathrm{2}} {x}\:−{sin}^{\mathrm{2}} {x}\:{dx} \\ $$$$=\:\int_{\mathrm{0}} ^{\pi} \:\:{cos}\left(\mathrm{2}{x}\right){dx}=\frac{\mathrm{1}}{\mathrm{2}}\left[\:{sin}\left(\mathrm{2}{x}\right)\right]_{\mathrm{0}} ^{\pi} =\mathrm{0}\:{so} \\ $$$${I}\:={J}\:\Rightarrow\:\mathrm{2}{I}\:=\:\frac{\mathrm{3}\pi}{\mathrm{4}}\:\Rightarrow\:{I}\:=\frac{\mathrm{3}\pi}{\mathrm{8}}\:{and}\:{J}\:=\frac{\mathrm{3}\pi}{\mathrm{8}} \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Jun/18
$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\Pi} \left(\mathrm{1}+{cos}\mathrm{2}{x}\right)^{\mathrm{2}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\Pi} \left(\mathrm{1}+\mathrm{2}{cos}\mathrm{2}{x}+{cos}^{\mathrm{2}} \mathrm{2}{x}\:\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\Pi} {dx}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\Pi} {cos}\mathrm{2}{xdx}+\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\Pi} \left(\mathrm{1}+{cos}\mathrm{4}{x}\right)\:{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\Pi} {dx}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\Pi} {cos}\mathrm{2}{x}\:{dx}+\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\Pi} {dx}+\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\Pi} {cos}\mathrm{4}{x} \\ $$$$=\frac{\Pi}{\mathrm{4}}+\frac{\Pi}{\mathrm{8}} \\ $$$$=\frac{\mathrm{3}\Pi}{\mathrm{8}} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Jun/18
$${j}=\int_{\mathrm{0}} ^{\Pi\left(\right.} \left(\frac{\mathrm{1}−{cos}\mathrm{2}{x}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\Pi} \mathrm{1}−\mathrm{2}{cos}\mathrm{2}{x}+\frac{\mathrm{1}+{cos}\mathrm{4}{x}}{\mathrm{2}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\Pi} {dx}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\Pi} {cos}\mathrm{2}{xdx}+\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\Pi} {dx}+\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\Pi} {cos}\mathrm{4}{x} \\ $$$$=\frac{\Pi}{\mathrm{4}}+\frac{\Pi}{\mathrm{8}}=\frac{\mathrm{3}\Pi}{\mathrm{8}} \\ $$