Question Number 36438 by prof Abdo imad last updated on 02/Jun/18
$${let}\:{F}\left({x}\right)\:=\int_{{x}} ^{\frac{\mathrm{1}}{{x}}} \:\:\frac{{arctan}\left({t}\right)}{{t}}{dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\:\frac{{dF}}{{dx}}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{F}\left({x}\right). \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 02/Jun/18
Commented by prof Abdo imad last updated on 03/Jun/18
$${changement}\:{t}\:=\frac{\mathrm{1}}{{u}}\:{give} \\ $$$$\left.\mathrm{2}\right){F}\left({x}\right)\:=\:\int_{\frac{\mathrm{1}}{{x}}} ^{{x}} \:\:\:\frac{\frac{\pi}{\mathrm{2}}\:−{arctan}\left({u}\right)}{\frac{\mathrm{1}}{{u}}}\:\left(−\frac{{du}}{{u}^{\mathrm{2}} }\right) \\ $$$$=\:\int_{{x}} ^{\frac{\mathrm{1}}{{x}}} \:\:\frac{\frac{\pi}{\mathrm{2}}\:−{arctan}\left({u}\right)}{{u}}{du}\: \\ $$$$=\:\frac{\pi}{\mathrm{2}}\:\int_{{x}} ^{\frac{\mathrm{1}}{{x}}} \:\:\frac{{du}}{{u}}\:\:−\:\int_{{x}} ^{\frac{\mathrm{1}}{{x}}} \:\:\:\frac{{arctan}\left({u}\right)}{{u}}\:{du}\:\Rightarrow \\ $$$$\mathrm{2}{F}\left({x}\right)\:=\:\frac{\pi}{\mathrm{2}}\left[{ln}\mid{u}\mid\right]_{{x}} ^{\frac{\mathrm{1}}{{x}}} \:=\frac{\pi}{\mathrm{2}}\left\{\:−\mathrm{2}{ln}\left({x}\right)\right\} \\ $$$$=\:−\pi\:{ln}\left({x}\right)\:\Rightarrow\:{F}\left({x}\right)\:=−\frac{\pi}{\mathrm{2}}{ln}\left({x}\right) \\ $$$$\left.\mathrm{1}\right)\:\:\frac{{dF}}{{dx}}\left({x}\right)\:=\:−\frac{\pi}{\mathrm{2}{x}}\:\:{with}\:{x}>\mathrm{0} \\ $$
Commented by prof Abdo imad last updated on 03/Jun/18
$${add}\:{x}>\mathrm{0}\:{to}\:{Q}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jun/18
$${F}'\left({x}\right)=\int_{{x}} ^{\frac{\mathrm{1}}{{x}}} \frac{\partial}{\partial{x}}\left(\frac{{tan}^{−\mathrm{1}} {t}}{{t}}\right){dt}+\frac{{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{x}}\right)}{\frac{\mathrm{1}}{{x}}}\frac{{d}\left(\frac{\mathrm{1}}{{x}}\right)}{{dx}}− \\ $$$$\frac{{tan}^{−\mathrm{1}} \left({x}\right)}{{x}}\frac{{dx}}{{dx}} \\ $$$$=\mathrm{0}+\frac{{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{x}}\right)}{\frac{\mathrm{1}}{{x}}}×\frac{−\mathrm{1}}{{x}^{\mathrm{2}} }−\frac{{tan}^{−\mathrm{1}} \left({x}\right)}{{x}} \\ $$$$=\frac{{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{x}}\right)}{−{x}}−\frac{{tan}^{−\mathrm{1}} \left({x}\right)}{{x}} \\ $$$$=\frac{−\mathrm{1}}{{x}}\left\{\frac{{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{x}}\right)+{tan}^{−\mathrm{1}} \left({x}\right)}{\mathrm{1}}\right\} \\ $$$$=\frac{−\mathrm{1}}{{x}}{tan}^{−\mathrm{1}} \left\{\frac{\left.{x}+\frac{\mathrm{1}}{{x}}\right)}{\mathrm{1}−{x}.\frac{\mathrm{1}}{{x}}}\right\} \\ $$$$=\frac{\mathrm{1}}{{x}}×\left(\frac{\Pi}{\mathrm{2}}\right] \\ $$$$\frac{{dF}}{{dx}}=\frac{\Pi}{\mathrm{2}}\frac{\mathrm{1}}{{x}} \\ $$$${dF}=\frac{\Pi}{\mathrm{2}}\frac{{dx}}{{x}} \\ $$$${F}=\frac{\Pi}{\mathrm{2}}{lnx} \\ $$