Question Number 167624 by mnjuly1970 last updated on 21/Mar/22
$$ \\ $$$$\:\:{solve} \\ $$$$\:\:\Omega\:={lim}_{\:{n}\rightarrow\infty} {n}^{\:\mathrm{2}} .\:{ln}\left(\:{n}\:.\:{sin}\left(\frac{\mathrm{1}}{{n}}\right)\right)=? \\ $$$$ \\ $$
Answered by qaz last updated on 21/Mar/22
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}n}^{\mathrm{2}} \mathrm{ln}\left(\mathrm{nsin}\:\frac{\mathrm{1}}{\mathrm{n}}\right) \\ $$$$=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}n}^{\mathrm{2}} \mathrm{ln}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{6n}^{\mathrm{2}} }+\mathcal{O}\left(\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{4}} }\right)\right) \\ $$$$=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}n}^{\mathrm{2}} \left(\left(−\frac{\mathrm{1}}{\mathrm{6n}^{\mathrm{2}} }+\mathcal{O}\left(\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{4}} }\right)\right)\right. \\ $$$$=−\frac{\mathrm{1}}{\mathrm{6}} \\ $$
Commented by mnjuly1970 last updated on 22/Mar/22
$$\checkmark \\ $$
Answered by LEKOUMA last updated on 21/Mar/22
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{n}^{\mathrm{2}} .{n}\mathrm{sin}\:\left(\frac{\mathrm{1}}{{n}}\right)\frac{\mathrm{ln}\:\left({n}.\mathrm{sin}\:\left(\frac{\mathrm{1}}{{n}}\right)\right)}{{n}.\mathrm{sin}\:\left(\frac{\mathrm{1}}{{n}}\right)} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{n}^{\mathrm{3}} \mathrm{sin}\left(\frac{\mathrm{1}}{{n}}\right) \\ $$$${Poson},\:\:{t}=\frac{\mathrm{1}}{{n}}\:\Rightarrow\:{n}=\frac{\mathrm{1}}{{t}} \\ $$$${si}\:{n} \infty,\:{t}=\mathrm{0} \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{{t}^{\mathrm{3}} }\mathrm{sin}\:{t}=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:{t}}{{t}^{\mathrm{3}} } \\ $$$${Hospital} \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{sin}\:{t}\right)'}{\left({t}^{\mathrm{3}} \right)\:'}=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cos}\:{t}}{\mathrm{3}{t}^{\mathrm{2}} }=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{cos}\:{t}\right)\:'}{\left(\mathrm{3}{t}^{\mathrm{2}} \right)^{'} } \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−\mathrm{sin}\:{t}}{\mathrm{6}{t}}=−\frac{\mathrm{1}}{\mathrm{6}}\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:{t}}{{t}}=−\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\underset{{n}\rightarrow\:\infty} {\mathrm{lim}}\frac{\mathrm{ln}\:\left({n}.\mathrm{sin}\:\left(\frac{\mathrm{1}}{{n}}\right)\right)}{{n}.\mathrm{sin}\:\left(\frac{\mathrm{1}}{{n}}\right)}=\mathrm{0} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{n}^{\mathrm{2}} \mathrm{ln}\:\left({n}.\mathrm{sin}\left(\frac{\mathrm{1}}{{n}}\right)\right)=\mathrm{0}\: \\ $$