Menu Close

x-dx-1-x-2-1-x-2-3-




Question Number 36595 by rahul 19 last updated on 03/Jun/18
∫ ((x dx)/( (√(1+x^2 +(√((1+x^2 )^3 )))))) = ?
$$\int\:\frac{{x}\:{dx}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} +\sqrt{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }}}\:=\:? \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18
t=1+x^2   dt=2xdx  ∫(1/2)×(dt/( (√(t+(√(t^3  ))))))  (1/2)∫(dt/( (√(t+t(√t) ))  ))  (1/2)∫(dt/( (√t) ((√(1+(√t) )))))  k^2 =1+(√t)   2kdk=0+(1/(2(√t)))dt  4kdk=(dt/( (√t) ))  (1/2)∫((4kdk)/k)  2k+c  2(1+(√t) )+c  2(1+(√(1+x^2 )) ) +c....ans
$${t}=\mathrm{1}+{x}^{\mathrm{2}} \\ $$$${dt}=\mathrm{2}{xdx} \\ $$$$\int\frac{\mathrm{1}}{\mathrm{2}}×\frac{{dt}}{\:\sqrt{{t}+\sqrt{{t}^{\mathrm{3}} \:}}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\:\sqrt{{t}+{t}\sqrt{{t}}\:}\:\:} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\:\sqrt{{t}}\:\left(\sqrt{\left.\mathrm{1}+\sqrt{{t}}\:\right)}\right.} \\ $$$${k}^{\mathrm{2}} =\mathrm{1}+\sqrt{{t}}\: \\ $$$$\mathrm{2}{kdk}=\mathrm{0}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{{t}}}{dt} \\ $$$$\mathrm{4}{kdk}=\frac{{dt}}{\:\sqrt{{t}}\:} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{4}{kdk}}{{k}} \\ $$$$\mathrm{2}{k}+{c} \\ $$$$\mathrm{2}\left(\mathrm{1}+\sqrt{{t}}\:\right)+{c} \\ $$$$\mathrm{2}\left(\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\right)\:+{c}….{ans} \\ $$
Commented by rahul 19 last updated on 03/Jun/18
Typo in 2nd last line .
Answered by Joel579 last updated on 03/Jun/18
I = ∫ (x/( (√((1 + x^2 ) + (1 + x^2 )^(3/2) )))) dx   (u^2  = 1 + x^2   →  2u du = 2x dx)     = ∫ (x/( (√(u^2  + u^3 )))) . ((2u du)/(2x))     = ∫ ((u du)/( (√(u^2 (1 + u)))))      = ∫ (du/( (√(1 + u))))     = 2(√(1 + u)) + C     = 2(√(1 + (√(1 + x^2 )))) + C
$${I}\:=\:\int\:\frac{{x}}{\:\sqrt{\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)\:+\:\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }}\:{dx}\:\:\:\left({u}^{\mathrm{2}} \:=\:\mathrm{1}\:+\:{x}^{\mathrm{2}} \:\:\rightarrow\:\:\mathrm{2}{u}\:{du}\:=\:\mathrm{2}{x}\:{dx}\right) \\ $$$$\:\:\:=\:\int\:\frac{{x}}{\:\sqrt{{u}^{\mathrm{2}} \:+\:{u}^{\mathrm{3}} }}\:.\:\frac{\mathrm{2}{u}\:{du}}{\mathrm{2}{x}} \\ $$$$\:\:\:=\:\int\:\frac{{u}\:{du}}{\:\sqrt{{u}^{\mathrm{2}} \left(\mathrm{1}\:+\:{u}\right)}}\: \\ $$$$\:\:\:=\:\int\:\frac{{du}}{\:\sqrt{\mathrm{1}\:+\:{u}}} \\ $$$$\:\:\:=\:\mathrm{2}\sqrt{\mathrm{1}\:+\:{u}}\:+\:{C} \\ $$$$\:\:\:=\:\mathrm{2}\sqrt{\mathrm{1}\:+\:\sqrt{\mathrm{1}\:+\:{x}^{\mathrm{2}} }}\:+\:{C} \\ $$
Commented by rahul 19 last updated on 03/Jun/18
thanks sir����

Leave a Reply

Your email address will not be published. Required fields are marked *