Menu Close

lim-x-x-x-x-




Question Number 36843 by Penguin last updated on 06/Jun/18
lim_(x→∞) (x^x^x^(.....)   )
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left({x}^{{x}^{{x}^{…..} } } \right) \\ $$
Commented by maxmathsup by imad last updated on 06/Jun/18
let put  A_n (x)=x^x^(x...)  (n×)  A_2 (x)=x^x  =e^(xln(x))   A_3 (x)=x^x^x   =(A_2 (x))^x  =e^(x^2 ln(x))   ⇒ A_n (x)= e^(x^(n−1) ln(x))   let suppose that  A_(n+1) (x)= x^x^(...)  (n+1)×=(A_n (x))^x = (e^(x^(n−1) ln(x)) )^x  = e^(x^n ln(x))   we have lim_(x→+∞ and n→+∞)  A_n (x) =+∞ .
$${let}\:{put}\:\:{A}_{{n}} \left({x}\right)={x}^{{x}^{{x}…} } \left({n}×\right) \\ $$$${A}_{\mathrm{2}} \left({x}\right)={x}^{{x}} \:={e}^{{xln}\left({x}\right)} \\ $$$${A}_{\mathrm{3}} \left({x}\right)={x}^{{x}^{{x}} } \:=\left({A}_{\mathrm{2}} \left({x}\right)\right)^{{x}} \:={e}^{{x}^{\mathrm{2}} {ln}\left({x}\right)} \:\:\Rightarrow\:{A}_{{n}} \left({x}\right)=\:{e}^{{x}^{{n}−\mathrm{1}} {ln}\left({x}\right)} \:\:{let}\:{suppose}\:{that} \\ $$$${A}_{{n}+\mathrm{1}} \left({x}\right)=\:{x}^{{x}^{…} } \left({n}+\mathrm{1}\right)×=\left({A}_{{n}} \left({x}\right)\right)^{{x}} =\:\left({e}^{{x}^{{n}−\mathrm{1}} {ln}\left({x}\right)} \right)^{{x}} \:=\:{e}^{{x}^{{n}} {ln}\left({x}\right)} \\ $$$${we}\:{have}\:{lim}_{{x}\rightarrow+\infty\:{and}\:{n}\rightarrow+\infty} \:{A}_{{n}} \left({x}\right)\:=+\infty\:. \\ $$
Answered by MJS last updated on 06/Jun/18
∞, what else would you expect?
$$\infty,\:\mathrm{what}\:\mathrm{else}\:\mathrm{would}\:\mathrm{you}\:\mathrm{expect}? \\ $$
Commented by maxmathsup by imad last updated on 06/Jun/18
that must be +∞
$${that}\:{must}\:{be}\:+\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *