Menu Close

let-z-r-e-i-fins-f-z-z-x-2-dx-




Question Number 36916 by maxmathsup by imad last updated on 07/Jun/18
let z=r e^(iθ)     fins f(z) = ∫_(−∞) ^(+∞)   z^(−x^2 ) dx
$${let}\:{z}={r}\:{e}^{{i}\theta} \:\:\:\:{fins}\:{f}\left({z}\right)\:=\:\int_{−\infty} ^{+\infty} \:\:{z}^{−{x}^{\mathrm{2}} } {dx} \\ $$
Commented by math khazana by abdo last updated on 09/Jun/18
f(z) = ∫_(−∞) ^(+∞)   (r e^(iθ) )^(−x^2 ) dx  =∫_(−∞) ^(+∞)   { e^(ln(r) +iθ) }^(−x^2 ) dx  = ∫_(−∞) ^(+∞)   e^(−(ln(r) +iθ)x^2  )  dx  but changement   (√(ln(r) +iθ))x =t give  f(z) = (1/( (√(ln(r) +iθ)))) ∫_(−∞) ^(+∞)    e^(−t^2 ) dt  =((√π)/( (√(ln(r)+iθ)))) .
$${f}\left({z}\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\left({r}\:{e}^{{i}\theta} \right)^{−{x}^{\mathrm{2}} } {dx} \\ $$$$=\int_{−\infty} ^{+\infty} \:\:\left\{\:{e}^{{ln}\left({r}\right)\:+{i}\theta} \right\}^{−{x}^{\mathrm{2}} } {dx} \\ $$$$=\:\int_{−\infty} ^{+\infty} \:\:{e}^{−\left({ln}\left({r}\right)\:+{i}\theta\right){x}^{\mathrm{2}} \:} \:{dx}\:\:{but}\:{changement}\: \\ $$$$\sqrt{{ln}\left({r}\right)\:+{i}\theta}{x}\:={t}\:{give} \\ $$$${f}\left({z}\right)\:=\:\frac{\mathrm{1}}{\:\sqrt{{ln}\left({r}\right)\:+{i}\theta}}\:\int_{−\infty} ^{+\infty} \:\:\:{e}^{−{t}^{\mathrm{2}} } {dt} \\ $$$$=\frac{\sqrt{\pi}}{\:\sqrt{{ln}\left({r}\right)+{i}\theta}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *