Menu Close

f-is-a-real-function-derivable-on-0-1-f-0-0-and-f-1-1-prove-that-n-N-x-i-1-i-n-seqence-of-reals-with-x-i-x-j-if-i-j-and-k-1-n-f-x-k-n-




Question Number 36927 by maxmathsup by imad last updated on 07/Jun/18
f is a real function derivable on [0,1] /f(0)=0 and f(1)=1  prove that ∀n∈N  ∃   (x_i )_(1≤i≤n)  seqence of reals with x_i ≠x_j  if i≠j  and Σ_(k=1) ^n  f^′ (x_k )=n.
$${f}\:{is}\:{a}\:{real}\:{function}\:{derivable}\:{on}\:\left[\mathrm{0},\mathrm{1}\right]\:/{f}\left(\mathrm{0}\right)=\mathrm{0}\:{and}\:{f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$${prove}\:{that}\:\forall{n}\in{N}\:\:\exists\:\:\:\left({x}_{{i}} \right)_{\mathrm{1}\leqslant{i}\leqslant{n}} \:{seqence}\:{of}\:{reals}\:{with}\:{x}_{{i}} \neq{x}_{{j}} \:{if}\:{i}\neq{j} \\ $$$${and}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{f}^{'} \left({x}_{{k}} \right)={n}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *