Menu Close

If-4x-8cos-x-tan-x-2sec-x-4log-cosx-1-sin-x-6-x-0-then-largest-value-of-is-




Question Number 37108 by rahul 19 last updated on 09/Jun/18
If 4x+8cos x+tan x−2sec x−4log {cosx(1+sin x)}≥6  ∀ x ε [0,ψ) then largest value of ψ is ?
$$\mathrm{If}\:\mathrm{4}{x}+\mathrm{8cos}\:{x}+\mathrm{tan}\:{x}−\mathrm{2sec}\:{x}−\mathrm{4log}\:\left\{\mathrm{cos}{x}\left(\mathrm{1}+\mathrm{sin}\:{x}\right)\right\}\geqslant\mathrm{6} \\ $$$$\forall\:{x}\:\epsilon\:\left[\mathrm{0},\psi\right)\:\mathrm{then}\:\mathrm{largest}\:\mathrm{value}\:\mathrm{of}\:\psi\:\mathrm{is}\:? \\ $$
Answered by ajfour last updated on 09/Jun/18
f(x)=4x+8cos x+tan x−4ln {cos x(1+sin x)}−6  f(0)=8  f ′(x)=4−8sin x+sec^2 x−((4(−sin x+cos^2 x−sin^2 x))/(cos x(1+sin x)))  f ′(x)=4−8sin x+sec^2 x−((4(1−2sin x))/(cos x))    =4−8sin x+sec^2 x−4sec x+8tan x    =(sec x−2)^2 +8(tan x−sin x)   ⇒  f ′(x) > 0  for all x > 0 .  so    f(x) > f(0)   ⇒    f(x) > 8 for all x≥0  Hence  ψ→ +∞ .
$${f}\left({x}\right)=\mathrm{4}{x}+\mathrm{8cos}\:{x}+\mathrm{tan}\:{x}−\mathrm{4ln}\:\left\{\mathrm{cos}\:{x}\left(\mathrm{1}+\mathrm{sin}\:{x}\right)\right\}−\mathrm{6} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{8} \\ $$$${f}\:'\left({x}\right)=\mathrm{4}−\mathrm{8sin}\:{x}+\mathrm{sec}\:^{\mathrm{2}} {x}−\frac{\mathrm{4}\left(−\mathrm{sin}\:{x}+\mathrm{cos}\:^{\mathrm{2}} {x}−\mathrm{sin}\:^{\mathrm{2}} {x}\right)}{\mathrm{cos}\:{x}\left(\mathrm{1}+\mathrm{sin}\:{x}\right)} \\ $$$${f}\:'\left({x}\right)=\mathrm{4}−\mathrm{8sin}\:{x}+\mathrm{sec}\:^{\mathrm{2}} {x}−\frac{\mathrm{4}\left(\mathrm{1}−\mathrm{2sin}\:{x}\right)}{\mathrm{cos}\:{x}} \\ $$$$\:\:=\mathrm{4}−\mathrm{8sin}\:{x}+\mathrm{sec}\:^{\mathrm{2}} {x}−\mathrm{4sec}\:{x}+\mathrm{8tan}\:{x} \\ $$$$\:\:=\left(\mathrm{sec}\:{x}−\mathrm{2}\right)^{\mathrm{2}} +\mathrm{8}\left(\mathrm{tan}\:{x}−\mathrm{sin}\:{x}\right)\: \\ $$$$\Rightarrow\:\:{f}\:'\left({x}\right)\:>\:\mathrm{0}\:\:{for}\:{all}\:{x}\:>\:\mathrm{0}\:. \\ $$$${so}\:\:\:\:{f}\left({x}\right)\:>\:{f}\left(\mathrm{0}\right)\: \\ $$$$\Rightarrow\:\:\:\:{f}\left({x}\right)\:>\:\mathrm{8}\:{for}\:{all}\:{x}\geqslant\mathrm{0} \\ $$$${Hence}\:\:\psi\rightarrow\:+\infty\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *