Question Number 15 by user1 last updated on 25/Jan/15
$$\mathrm{If}\:{A}=\begin{bmatrix}{\:\:\mathrm{3}}&{−\mathrm{5}}\\{−\mathrm{4}}&{\:\:\:\mathrm{2}}\end{bmatrix}, \\ $$$$\mathrm{show}\:\mathrm{that}\:{A}^{\mathrm{2}} −\mathrm{5}{A}−\mathrm{14}{I}=\mathrm{0} \\ $$
Answered by user1 last updated on 30/Oct/14
$$\mathrm{We}\:\mathrm{have}: \\ $$$${A}^{\mathrm{2}} =\begin{bmatrix}{\:\:\:\mathrm{3}}&{−\mathrm{5}}\\{−\mathrm{4}}&{\:\:\:\:\mathrm{2}}\end{bmatrix}\begin{bmatrix}{\:\:\:\mathrm{3}}&{−\mathrm{5}}\\{−\mathrm{4}}&{\:\:\:\:\mathrm{2}}\end{bmatrix} \\ $$$$=\begin{bmatrix}{\mathrm{3}\centerdot\mathrm{3}+\left(−\mathrm{5}\right)\left(−\mathrm{4}\right)}&{\mathrm{3}\centerdot\left(−\mathrm{5}\right)+\left(−\mathrm{5}\right)\centerdot\mathrm{2}}\\{−\mathrm{4}\centerdot\mathrm{3}+\mathrm{2}\centerdot\left(−\mathrm{4}\right)}&{−\mathrm{4}\centerdot\left(−\mathrm{5}\right)+\mathrm{2}\centerdot\mathrm{2}}\end{bmatrix} \\ $$$$=\begin{bmatrix}{\:\:\:\mathrm{29}}&{−\mathrm{25}}\\{−\mathrm{20}}&{\:\:\:\mathrm{24}}\end{bmatrix} \\ $$$$−\mathrm{5}{A}=\left(−\mathrm{5}\right)\begin{bmatrix}{\:\:\:\mathrm{3}}&{−\mathrm{5}}\\{−\mathrm{4}}&{\:\:\:\:\mathrm{2}}\end{bmatrix}=\begin{bmatrix}{−\mathrm{15}}&{\:\:\:\mathrm{25}}\\{\:\:\mathrm{20}}&{\:−\mathrm{10}}\end{bmatrix} \\ $$$$−\mathrm{14}{I}=\left(−\mathrm{14}\right)\begin{bmatrix}{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}\end{bmatrix}=\begin{bmatrix}{−\mathrm{14}}&{\:\:\:\:\mathrm{0}}\\{\:\:\:\:\mathrm{0}}&{−\mathrm{14}}\end{bmatrix} \\ $$$$\therefore\:{A}^{\mathrm{2}} −\mathrm{5}{A}−\mathrm{14}{I}={A}^{\mathrm{2}} +\left(−\mathrm{5}\right){A}+\left(−\mathrm{14}{I}\right) \\ $$$$=\begin{bmatrix}{\:\:\:\mathrm{29}}&{−\mathrm{25}}\\{−\mathrm{20}}&{\:\:\:\mathrm{24}}\end{bmatrix}+\begin{bmatrix}{−\mathrm{15}}&{\:\:\:\mathrm{25}}\\{\:\:\mathrm{20}}&{\:−\mathrm{10}}\end{bmatrix}+\begin{bmatrix}{−\mathrm{14}}&{\:\:\:\:\mathrm{0}}\\{\:\:\:\:\mathrm{0}}&{−\mathrm{14}}\end{bmatrix} \\ $$$$=\begin{bmatrix}{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}\end{bmatrix} \\ $$$$\mathrm{Hence},\:\:\:{A}^{\mathrm{2}} −\mathrm{5}{A}−\mathrm{14}{I}=\mathrm{0} \\ $$