Menu Close

find-0-1-1-x-n-1-1-x-2-dx-




Question Number 37270 by abdo.msup.com last updated on 11/Jun/18
find  ∫_0 ^1 (((1−x^(n+1) )/(1−x)))^2 dx .
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}−{x}^{{n}+\mathrm{1}} }{\mathrm{1}−{x}}\right)^{\mathrm{2}} {dx}\:. \\ $$
Answered by abdo.msup.com last updated on 27/Jul/18
let I = ∫_0 ^1 (((1−x^(n+1) )/(1−x)))^2 dx  I =∫_0 ^1 (1+x+x^2  +...+x^n )^2 dx  =∫_0 ^1 (Σ_(i=0) ^n x^i )^2 dx  =∫_0 ^1 (Σ_(i=0) ^n  x^(2i)  +2Σ_(1≤i<j≤n)  x^(i+j) )dx  =Σ_(i=0) ^n  (1/(2i+1)) +2Σ_(1≤i<j≤n)  (1/(i+j))
$${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}−{x}^{{n}+\mathrm{1}} }{\mathrm{1}−{x}}\right)^{\mathrm{2}} {dx} \\ $$$${I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \:+…+{x}^{{n}} \right)^{\mathrm{2}} {dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\sum_{{i}=\mathrm{0}} ^{{n}} {x}^{{i}} \right)^{\mathrm{2}} {dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\sum_{{i}=\mathrm{0}} ^{{n}} \:{x}^{\mathrm{2}{i}} \:+\mathrm{2}\sum_{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} \:{x}^{{i}+{j}} \right){dx} \\ $$$$=\sum_{{i}=\mathrm{0}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}{i}+\mathrm{1}}\:+\mathrm{2}\sum_{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} \:\frac{\mathrm{1}}{{i}+{j}} \\ $$
Commented by abdo.msup.com last updated on 27/Jul/18
I =Σ_(i=0) ^n  (1/(2i+1)) +2Σ_(1≤i<j≤n) (1/(i+j+1))
$${I}\:=\sum_{{i}=\mathrm{0}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}{i}+\mathrm{1}}\:+\mathrm{2}\sum_{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} \frac{\mathrm{1}}{{i}+{j}+\mathrm{1}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *