Question Number 37284 by abdo.msup.com last updated on 11/Jun/18
$${find}\:\:{A}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{{n}} }{{ch}\left({x}\right)}\:{dx}\:. \\ $$
Commented by prof Abdo imad last updated on 17/Jun/18
$${A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{2}{x}^{{n}} }{{e}^{{x}} \:+{e}^{−{x}} }\:=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{{n}} \:{e}^{−{x}} }{\mathrm{1}+{e}^{−\mathrm{2}{x}} }{dx} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{e}^{−\mathrm{2}{nx}} \:{x}^{{n}} \:{e}^{−{x}} \right){dx} \\ $$$$=\mathrm{2}\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{{n}} \:{e}^{−\left(\mathrm{2}{n}+\mathrm{1}\right){x}} {dx} \\ $$$$=_{\left(\mathrm{2}{n}+\mathrm{1}\right){x}={t}} \:\:\mathrm{2}\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:\:\int_{\mathrm{0}} ^{\mathrm{2}{n}+\mathrm{1}} \:\frac{{t}^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{n}} }\:{e}^{−{t}} \:\frac{{dt}}{\mathrm{2}{n}+\mathrm{1}} \\ $$$$=\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:{A}_{{n}} \:\:{with} \\ $$$${A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{2}{n}+\mathrm{1}} \:{t}^{{n}} \:{e}^{−{t}} {dt} \\ $$$$=\left[−{t}^{{n}} \:{e}^{−{t}} \right]_{\mathrm{0}} ^{\mathrm{2}{n}+\mathrm{1}} \:+\int_{\mathrm{0}} ^{\mathrm{2}{n}+\mathrm{1}} \:{nt}^{{n}−\mathrm{1}} \:{e}^{−{t}} {dt} \\ $$$$=−\left(\mathrm{2}{n}+\mathrm{1}\right)^{{n}} \:{e}^{−\left(\mathrm{2}{n}+\mathrm{1}\right)} \:\:+{n}\:{A}_{{n}−\mathrm{1}} \:\:\:{be}\:{continued}… \\ $$