Menu Close

calculate-f-t-cos-tx-1-x-2-dx-




Question Number 37287 by math khazana by abdo last updated on 11/Jun/18
calculate  f(t) = ∫_(−∞) ^(+∞)    ((cos(tx))/(1+x^2 )) dx
$${calculate}\:\:{f}\left({t}\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left({tx}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx} \\ $$
Commented by prof Abdo imad last updated on 16/Jun/18
f(t)=Re(∫_(−∞) ^(+∞)   (e^(itx) /(1+x^2 ))dx) let  ϕ(z)= (e^(itz) /(1+z^2 ))  the poles of ϕ are i and −i  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ Res(ϕ,i) =2iπ (e^(it(i)) /(2i))  =π e^(−t)      with t≥0 .
$${f}\left({t}\right)={Re}\left(\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{itx}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\right)\:{let} \\ $$$$\varphi\left({z}\right)=\:\frac{{e}^{{itz}} }{\mathrm{1}+{z}^{\mathrm{2}} }\:\:{the}\:{poles}\:{of}\:\varphi\:{are}\:{i}\:{and}\:−{i} \\ $$$$\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right)\:=\mathrm{2}{i}\pi\:\frac{{e}^{{it}\left({i}\right)} }{\mathrm{2}{i}} \\ $$$$=\pi\:{e}^{−{t}} \:\:\:\:\:{with}\:{t}\geqslant\mathrm{0}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *