Menu Close

calculate-g-e-x-2-sin-sin-x-2-dx-




Question Number 37291 by math khazana by abdo last updated on 11/Jun/18
calculate g(θ) = ∫_(−∞) ^(+∞)  e^(−x^2 )  sin(sinθ x^2 )dx .
$${calculate}\:{g}\left(\theta\right)\:=\:\int_{−\infty} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}} } \:{sin}\left({sin}\theta\:{x}^{\mathrm{2}} \right){dx}\:. \\ $$
Commented by math khazana by abdo last updated on 16/Jun/18
let λ =sinθ ⇒g(θ)=∫_(−∞) ^(+∞)  e^(−x^2 ) sin(λx^2 )dx  =Im { ∫_(−∞) ^(+∞)  e^(−x^2  +iλx^2 ) dx}  but  ∫_(−∞) ^(+∞)   e^(−x^2  +iλx^2 ) dx = ∫_(−∞) ^(+∞)   e^(−(1−iλ)x^2 ) dx  =_((√(1−iλ)) x =t)   ∫_(−∞) ^(+∞)   e^(−t^2 )   (dt/( (√(1−iλ))))  = (1/( (√(1−iλ)))) (√π)    but  1−iλ =(√(1+λ^2 )) { (1/( (√(1+λ^2 )))) +i ((−λ)/( (√(1+λ^2 ))))}=r e^(iϕ)   ⇒  r =(√(1+λ^2   ))   and  cosϕ= (1/( (√(1+λ^2 ))))  and sinϕ=((−λ)/( (√(1+λ^2 ))))  ⇒ tanϕ =−λ ⇒ ϕ =−arctan(λ)  1−iλ =(√(1+λ^2 ))  e^(−iartan(λ))  ⇒  (√(1−iλ_  ))  = (1+λ^2 )^(1/4)   e^(−(i/2)arctan(λ))  ⇒  ∫_(−∞) ^(+∞)    e^(−x^2  +iλx^2 ) dx = (√π)(1+λ^2 )^(−(1/4))   e^((i/2) arctan(λ))   =(√π)(1+λ^2 )^(−(1/4)) { cos(((arctan(λ))/2)) +i sin(((arctan(λ))/2)}  g(θ) = (√π)(1+sin^2 θ)^(−(1/4))  sin( ((arctan(sinθ)/2)) .
$${let}\:\lambda\:={sin}\theta\:\Rightarrow{g}\left(\theta\right)=\int_{−\infty} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}} } {sin}\left(\lambda{x}^{\mathrm{2}} \right){dx} \\ $$$$={Im}\:\left\{\:\int_{−\infty} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}} \:+{i}\lambda{x}^{\mathrm{2}} } {dx}\right\}\:\:{but} \\ $$$$\int_{−\infty} ^{+\infty} \:\:{e}^{−{x}^{\mathrm{2}} \:+{i}\lambda{x}^{\mathrm{2}} } {dx}\:=\:\int_{−\infty} ^{+\infty} \:\:{e}^{−\left(\mathrm{1}−{i}\lambda\right){x}^{\mathrm{2}} } {dx} \\ $$$$=_{\sqrt{\mathrm{1}−{i}\lambda}\:{x}\:={t}} \:\:\int_{−\infty} ^{+\infty} \:\:{e}^{−{t}^{\mathrm{2}} } \:\:\frac{{dt}}{\:\sqrt{\mathrm{1}−{i}\lambda}} \\ $$$$=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{i}\lambda}}\:\sqrt{\pi}\:\:\:\:{but} \\ $$$$\mathrm{1}−{i}\lambda\:=\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }\:\left\{\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}\:+{i}\:\frac{−\lambda}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}\right\}={r}\:{e}^{{i}\varphi} \:\:\Rightarrow \\ $$$${r}\:=\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} \:\:}\:\:\:{and}\:\:{cos}\varphi=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}\:\:{and}\:{sin}\varphi=\frac{−\lambda}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }} \\ $$$$\Rightarrow\:{tan}\varphi\:=−\lambda\:\Rightarrow\:\varphi\:=−{arctan}\left(\lambda\right) \\ $$$$\mathrm{1}−{i}\lambda\:=\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }\:\:{e}^{−{iartan}\left(\lambda\right)} \:\Rightarrow \\ $$$$\sqrt{\mathrm{1}−{i}\lambda_{\:} }\:\:=\:\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{4}}} \:\:{e}^{−\frac{{i}}{\mathrm{2}}{arctan}\left(\lambda\right)} \:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\:\:{e}^{−{x}^{\mathrm{2}} \:+{i}\lambda{x}^{\mathrm{2}} } {dx}\:=\:\sqrt{\pi}\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{4}}} \:\:{e}^{\frac{{i}}{\mathrm{2}}\:{arctan}\left(\lambda\right)} \\ $$$$=\sqrt{\pi}\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{4}}} \left\{\:{cos}\left(\frac{{arctan}\left(\lambda\right)}{\mathrm{2}}\right)\:+{i}\:{sin}\left(\frac{{arctan}\left(\lambda\right)}{\mathrm{2}}\right\}\right. \\ $$$${g}\left(\theta\right)\:=\:\sqrt{\pi}\left(\mathrm{1}+{sin}^{\mathrm{2}} \theta\right)^{−\frac{\mathrm{1}}{\mathrm{4}}} \:{sin}\left(\:\frac{{arctan}\left({sin}\theta\right.}{\mathrm{2}}\right)\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *