Question Number 37291 by math khazana by abdo last updated on 11/Jun/18
$${calculate}\:{g}\left(\theta\right)\:=\:\int_{−\infty} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}} } \:{sin}\left({sin}\theta\:{x}^{\mathrm{2}} \right){dx}\:. \\ $$
Commented by math khazana by abdo last updated on 16/Jun/18
$${let}\:\lambda\:={sin}\theta\:\Rightarrow{g}\left(\theta\right)=\int_{−\infty} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}} } {sin}\left(\lambda{x}^{\mathrm{2}} \right){dx} \\ $$$$={Im}\:\left\{\:\int_{−\infty} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}} \:+{i}\lambda{x}^{\mathrm{2}} } {dx}\right\}\:\:{but} \\ $$$$\int_{−\infty} ^{+\infty} \:\:{e}^{−{x}^{\mathrm{2}} \:+{i}\lambda{x}^{\mathrm{2}} } {dx}\:=\:\int_{−\infty} ^{+\infty} \:\:{e}^{−\left(\mathrm{1}−{i}\lambda\right){x}^{\mathrm{2}} } {dx} \\ $$$$=_{\sqrt{\mathrm{1}−{i}\lambda}\:{x}\:={t}} \:\:\int_{−\infty} ^{+\infty} \:\:{e}^{−{t}^{\mathrm{2}} } \:\:\frac{{dt}}{\:\sqrt{\mathrm{1}−{i}\lambda}} \\ $$$$=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{i}\lambda}}\:\sqrt{\pi}\:\:\:\:{but} \\ $$$$\mathrm{1}−{i}\lambda\:=\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }\:\left\{\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}\:+{i}\:\frac{−\lambda}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}\right\}={r}\:{e}^{{i}\varphi} \:\:\Rightarrow \\ $$$${r}\:=\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} \:\:}\:\:\:{and}\:\:{cos}\varphi=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}\:\:{and}\:{sin}\varphi=\frac{−\lambda}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }} \\ $$$$\Rightarrow\:{tan}\varphi\:=−\lambda\:\Rightarrow\:\varphi\:=−{arctan}\left(\lambda\right) \\ $$$$\mathrm{1}−{i}\lambda\:=\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }\:\:{e}^{−{iartan}\left(\lambda\right)} \:\Rightarrow \\ $$$$\sqrt{\mathrm{1}−{i}\lambda_{\:} }\:\:=\:\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{4}}} \:\:{e}^{−\frac{{i}}{\mathrm{2}}{arctan}\left(\lambda\right)} \:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\:\:{e}^{−{x}^{\mathrm{2}} \:+{i}\lambda{x}^{\mathrm{2}} } {dx}\:=\:\sqrt{\pi}\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{4}}} \:\:{e}^{\frac{{i}}{\mathrm{2}}\:{arctan}\left(\lambda\right)} \\ $$$$=\sqrt{\pi}\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{4}}} \left\{\:{cos}\left(\frac{{arctan}\left(\lambda\right)}{\mathrm{2}}\right)\:+{i}\:{sin}\left(\frac{{arctan}\left(\lambda\right)}{\mathrm{2}}\right\}\right. \\ $$$${g}\left(\theta\right)\:=\:\sqrt{\pi}\left(\mathrm{1}+{sin}^{\mathrm{2}} \theta\right)^{−\frac{\mathrm{1}}{\mathrm{4}}} \:{sin}\left(\:\frac{{arctan}\left({sin}\theta\right.}{\mathrm{2}}\right)\:. \\ $$