Menu Close

calculate-e-ix-x-i-x-i-x-2-3-dx-




Question Number 37306 by math khazana by abdo last updated on 11/Jun/18
calculate ∫_(−∞) ^(+∞)    e^(ix)    ((x−i)/((x+i)(x^2  +3))) dx .
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:{e}^{{ix}} \:\:\:\frac{{x}−{i}}{\left({x}+{i}\right)\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)}\:{dx}\:. \\ $$$$ \\ $$
Commented by prof Abdo imad last updated on 15/Jun/18
let  ϕ(z) = e^(iz)    ((z−i)/((z+i)(z^2  +3)))  the poles of  ϕ are  −i ,i(√3),−i(√3)  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i(√3))  we have ϕ(z)=(((z−i)e^(iz) )/((z+i)(z−i(√3))(z+i(√3))))  Res(ϕ,i(√3)) = (((i(√3)−i)e^(i(i(√3))) )/((i(√3) +i)(2i(√3))))  = ((i((√3)−1)e^(−(√3)) )/(−2(√3)(1+(√3))))  = ((i(1−(√3))e^(−(√3)) )/(2(√3)  +6))  ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz = 2iπ  ((i(1−(√3))e^(−(√3)) )/(2(√3) +6))  =((π((√3)−1)e^(−(√3)) )/(3+(√3)))  ⇒  I  = ((π((√3)−1)e^(−(√3)) )/(3+(√3)))  .
$${let}\:\:\varphi\left({z}\right)\:=\:{e}^{{iz}} \:\:\:\frac{{z}−{i}}{\left({z}+{i}\right)\left({z}^{\mathrm{2}} \:+\mathrm{3}\right)}\:\:{the}\:{poles}\:{of} \\ $$$$\varphi\:{are}\:\:−{i}\:,{i}\sqrt{\mathrm{3}},−{i}\sqrt{\mathrm{3}} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\sqrt{\mathrm{3}}\right) \\ $$$${we}\:{have}\:\varphi\left({z}\right)=\frac{\left({z}−{i}\right){e}^{{iz}} }{\left({z}+{i}\right)\left({z}−{i}\sqrt{\mathrm{3}}\right)\left({z}+{i}\sqrt{\mathrm{3}}\right)} \\ $$$${Res}\left(\varphi,{i}\sqrt{\mathrm{3}}\right)\:=\:\frac{\left({i}\sqrt{\mathrm{3}}−{i}\right){e}^{{i}\left({i}\sqrt{\mathrm{3}}\right)} }{\left({i}\sqrt{\mathrm{3}}\:+{i}\right)\left(\mathrm{2}{i}\sqrt{\mathrm{3}}\right)} \\ $$$$=\:\frac{{i}\left(\sqrt{\mathrm{3}}−\mathrm{1}\right){e}^{−\sqrt{\mathrm{3}}} }{−\mathrm{2}\sqrt{\mathrm{3}}\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)}\:\:=\:\frac{{i}\left(\mathrm{1}−\sqrt{\mathrm{3}}\right){e}^{−\sqrt{\mathrm{3}}} }{\mathrm{2}\sqrt{\mathrm{3}}\:\:+\mathrm{6}}\:\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\:\mathrm{2}{i}\pi\:\:\frac{{i}\left(\mathrm{1}−\sqrt{\mathrm{3}}\right){e}^{−\sqrt{\mathrm{3}}} }{\mathrm{2}\sqrt{\mathrm{3}}\:+\mathrm{6}} \\ $$$$=\frac{\pi\left(\sqrt{\mathrm{3}}−\mathrm{1}\right){e}^{−\sqrt{\mathrm{3}}} }{\mathrm{3}+\sqrt{\mathrm{3}}}\:\:\Rightarrow \\ $$$${I}\:\:=\:\frac{\pi\left(\sqrt{\mathrm{3}}−\mathrm{1}\right){e}^{−\sqrt{\mathrm{3}}} }{\mathrm{3}+\sqrt{\mathrm{3}}}\:\:. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *