Menu Close

If-x-3-ax-2-bx-c-0-has-the-roots-are-and-find-the-value-of-2-2-2-in-terms-a-b-and-c-




Question Number 102883 by bobhans last updated on 11/Jul/20
If x^3 +ax^2 +bx+c = 0 has the roots are   α^�  β and γ . find the value of  αβ^2 +βγ^2 +γα^2  in terms a,b and c
$${If}\:{x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +{bx}+{c}\:=\:\mathrm{0}\:{has}\:{the}\:{roots}\:{are}\: \\ $$$$\bar {\alpha}\:\beta\:{and}\:\gamma\:.\:{find}\:{the}\:{value}\:{of} \\ $$$$\alpha\beta^{\mathrm{2}} +\beta\gamma^{\mathrm{2}} +\gamma\alpha^{\mathrm{2}} \:{in}\:{terms}\:{a},{b}\:{and}\:{c} \\ $$
Answered by bemath last updated on 11/Jul/20
α+β+γ = −a  αβ+αγ+βγ= b  αβγ = −c   ⇒(α+β+γ)(αβ+αγ+βγ) = −ab  ⇒α^2 β++α^2 γ+αβγ+αβ^2 +αβγ+β^2 γ+αβγ+αγ^2 +βγ^2 =−ab  αβ^2 +βγ^2 +γα^2 +α^2 β  +β^2 γ+αγ^2 +2αβγ = −ab  αβ^2 +βγ^2 +γα^2  =  −ab−2(−c)−β^2 γ−αγ^2 −α^2 β  = −ab+2c−(β^2 γ+αγ^2 +α^2 β)
$$\alpha+\beta+\gamma\:=\:−{a} \\ $$$$\alpha\beta+\alpha\gamma+\beta\gamma=\:{b} \\ $$$$\alpha\beta\gamma\:=\:−{c}\: \\ $$$$\Rightarrow\left(\alpha+\beta+\gamma\right)\left(\alpha\beta+\alpha\gamma+\beta\gamma\right)\:=\:−{ab} \\ $$$$\Rightarrow\alpha^{\mathrm{2}} \beta++\alpha^{\mathrm{2}} \gamma+\alpha\beta\gamma+\alpha\beta^{\mathrm{2}} +\alpha\beta\gamma+\beta^{\mathrm{2}} \gamma+\alpha\beta\gamma+\alpha\gamma^{\mathrm{2}} +\beta\gamma^{\mathrm{2}} =−{ab} \\ $$$$\alpha\beta^{\mathrm{2}} +\beta\gamma^{\mathrm{2}} +\gamma\alpha^{\mathrm{2}} +\alpha^{\mathrm{2}} \beta \\ $$$$+\beta^{\mathrm{2}} \gamma+\alpha\gamma^{\mathrm{2}} +\mathrm{2}\alpha\beta\gamma\:=\:−{ab} \\ $$$$\alpha\beta^{\mathrm{2}} +\beta\gamma^{\mathrm{2}} +\gamma\alpha^{\mathrm{2}} \:= \\ $$$$−{ab}−\mathrm{2}\left(−{c}\right)−\beta^{\mathrm{2}} \gamma−\alpha\gamma^{\mathrm{2}} −\alpha^{\mathrm{2}} \beta \\ $$$$=\:−{ab}+\mathrm{2}{c}−\left(\beta^{\mathrm{2}} \gamma+\alpha\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} \beta\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *