Menu Close

x-x-2-find-the-value-of-x-




Question Number 37414 by hari321 last updated on 12/Jun/18
x^x =2    find the value of x.
$${x}^{{x}} =\mathrm{2} \\ $$$$ \\ $$$${find}\:{the}\:{value}\:{of}\:{x}. \\ $$
Answered by MrW3 last updated on 12/Jun/18
x^x =2  x=2^(1/x)   x=e^((ln 2)/x)   ln 2=((ln 2)/x)e^((ln 2)/x)   ⇒((ln 2)/x)=W(ln 2)  ⇒x=((ln 2)/(W(ln 2)))≈((ln 2)/(0.4444))=1.5596    in general, the solution of eqn.  x^x =a with a≥(1/(^e (√e)))≈0.6922  is x=((ln a)/(W(ln a)))
$${x}^{{x}} =\mathrm{2} \\ $$$${x}=\mathrm{2}^{\frac{\mathrm{1}}{{x}}} \\ $$$${x}={e}^{\frac{\mathrm{ln}\:\mathrm{2}}{{x}}} \\ $$$$\mathrm{ln}\:\mathrm{2}=\frac{\mathrm{ln}\:\mathrm{2}}{{x}}{e}^{\frac{\mathrm{ln}\:\mathrm{2}}{{x}}} \\ $$$$\Rightarrow\frac{\mathrm{ln}\:\mathrm{2}}{{x}}={W}\left(\mathrm{ln}\:\mathrm{2}\right) \\ $$$$\Rightarrow{x}=\frac{\mathrm{ln}\:\mathrm{2}}{{W}\left(\mathrm{ln}\:\mathrm{2}\right)}\approx\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{0}.\mathrm{4444}}=\mathrm{1}.\mathrm{5596} \\ $$$$ \\ $$$${in}\:{general},\:{the}\:{solution}\:{of}\:{eqn}. \\ $$$${x}^{{x}} ={a}\:{with}\:{a}\geqslant\frac{\mathrm{1}}{\:^{{e}} \sqrt{{e}}}\approx\mathrm{0}.\mathrm{6922} \\ $$$${is}\:{x}=\frac{\mathrm{ln}\:{a}}{{W}\left(\mathrm{ln}\:{a}\right)} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 13/Jun/18
what is the meaning of W(ln2) pls explain
$${what}\:{is}\:{the}\:{meaning}\:{of}\:{W}\left({ln}\mathrm{2}\right)\:{pls}\:{explain} \\ $$
Commented by MrW3 last updated on 13/Jun/18
W(x) is the Lambert W function which  is the inverse function of y=xe^x .
$${W}\left({x}\right)\:{is}\:{the}\:{Lambert}\:{W}\:{function}\:{which} \\ $$$${is}\:{the}\:{inverse}\:{function}\:{of}\:{y}={xe}^{{x}} . \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 13/Jun/18
i have collected information as sir MRW3 guided    here i am posting....
$${i}\:{have}\:{collected}\:{information}\:{as}\:{sir}\:{MRW}\mathrm{3}\:{guided} \\ $$$$ \\ $$$${here}\:{i}\:{am}\:{posting}…. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 13/Jun/18
Commented by tanmay.chaudhury50@gmail.com last updated on 13/Jun/18
Commented by tanmay.chaudhury50@gmail.com last updated on 13/Jun/18
Commented by tanmay.chaudhury50@gmail.com last updated on 13/Jun/18
Commented by Rasheed.Sindhi last updated on 14/Jun/18
Helpful! Easy approach!
$$\mathcal{H}{elpful}!\:\mathcal{E}{asy}\:{approach}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *