Menu Close

x-x-dx-




Question Number 168519 by mokys last updated on 12/Apr/22
∫ x^x  dx
$$\int\:{x}^{{x}} \:{dx} \\ $$
Answered by Mathspace last updated on 12/Apr/22
∫ x^x dx=∫ e^(xlnx) dx  =∫ Σ (((xlnx)^n )/(n!))dx  =Σ(1/(n!))∫  x^n (lnx)^n dx  and ∫ x^n (lnx)^n dx can be found by  recurrence....
$$\int\:{x}^{{x}} {dx}=\int\:{e}^{{xlnx}} {dx} \\ $$$$=\int\:\Sigma\:\frac{\left({xlnx}\right)^{{n}} }{{n}!}{dx} \\ $$$$=\Sigma\frac{\mathrm{1}}{{n}!}\int\:\:{x}^{{n}} \left({lnx}\right)^{{n}} {dx} \\ $$$${and}\:\int\:{x}^{{n}} \left({lnx}\right)^{{n}} {dx}\:{can}\:{be}\:{found}\:{by} \\ $$$${recurrence}…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *