Menu Close

find-the-product-of-roots-2021-1-3-x-log-2021-x-x-3-




Question Number 103047 by bemath last updated on 12/Jul/20
find the product of roots   ((2021))^(1/(3 ))  x^(log_(2021)  (x))  = x^3
$${find}\:{the}\:{product}\:{of}\:{roots}\: \\ $$$$\sqrt[{\mathrm{3}\:}]{\mathrm{2021}}\:{x}^{\mathrm{log}_{\mathrm{2021}} \:\left({x}\right)} \:=\:{x}^{\mathrm{3}} \\ $$
Commented by mr W last updated on 12/Jul/20
Πx=2021^3  ?
$$\Pi{x}=\mathrm{2021}^{\mathrm{3}} \:? \\ $$
Answered by floor(10²Eta[1]) last updated on 12/Jul/20
log_(2021) (x)=y⇒x=2021^y   ⇒((2021))^(1/3) .(2021^y )^y =(2021^y )^3   2021^(1/3) .2021^y^2  =2021^(3y)   ⇒y^2 +(1/3)=3y⇒y^2 −3y+(1/3)=0  product=x_1 .x_2 =2021^y_1  .2021^y_2    =2021^(y_1 +y_2 ) =2021^3
$$\mathrm{log}_{\mathrm{2021}} \left(\mathrm{x}\right)=\mathrm{y}\Rightarrow\mathrm{x}=\mathrm{2021}^{\mathrm{y}} \\ $$$$\Rightarrow\sqrt[{\mathrm{3}}]{\mathrm{2021}}.\left(\mathrm{2021}^{\mathrm{y}} \right)^{\mathrm{y}} =\left(\mathrm{2021}^{\mathrm{y}} \right)^{\mathrm{3}} \\ $$$$\mathrm{2021}^{\mathrm{1}/\mathrm{3}} .\mathrm{2021}^{\mathrm{y}^{\mathrm{2}} } =\mathrm{2021}^{\mathrm{3y}} \\ $$$$\Rightarrow\mathrm{y}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{3}}=\mathrm{3y}\Rightarrow\mathrm{y}^{\mathrm{2}} −\mathrm{3y}+\frac{\mathrm{1}}{\mathrm{3}}=\mathrm{0} \\ $$$$\mathrm{product}=\mathrm{x}_{\mathrm{1}} .\mathrm{x}_{\mathrm{2}} =\mathrm{2021}^{\mathrm{y}_{\mathrm{1}} } .\mathrm{2021}^{\mathrm{y}_{\mathrm{2}} } \\ $$$$=\mathrm{2021}^{\mathrm{y}_{\mathrm{1}} +\mathrm{y}_{\mathrm{2}} } =\mathrm{2021}^{\mathrm{3}} \\ $$
Answered by bemath last updated on 14/Jul/20
set x=2021^y  ⇔ y=log _(2021) (x)  ⇒2021^(1/3) (2021^y )^y  = 2021^(3y)   2021^(y^2 −3y+(1/3))  = 1   ⇒y^2 −3y+(1/3) = 0 ; Δ=9−(4/3)>0   ⇒(y−a)(y−b) = 0⇒a+b = 3  A=2021^a  ;B = 2021^b   ⇔A.B = 2021^(a+b)  = 2021^3   = 21^3  (mod 100) = 261 (mod  1000)
$${set}\:{x}=\mathrm{2021}^{{y}} \:\Leftrightarrow\:{y}=\mathrm{log}\:_{\mathrm{2021}} \left({x}\right) \\ $$$$\Rightarrow\mathrm{2021}^{\frac{\mathrm{1}}{\mathrm{3}}} \left(\mathrm{2021}^{{y}} \right)^{{y}} \:=\:\mathrm{2021}^{\mathrm{3}{y}} \\ $$$$\mathrm{2021}^{{y}^{\mathrm{2}} −\mathrm{3}{y}+\frac{\mathrm{1}}{\mathrm{3}}} \:=\:\mathrm{1}\: \\ $$$$\Rightarrow{y}^{\mathrm{2}} −\mathrm{3}{y}+\frac{\mathrm{1}}{\mathrm{3}}\:=\:\mathrm{0}\:;\:\Delta=\mathrm{9}−\frac{\mathrm{4}}{\mathrm{3}}>\mathrm{0}\: \\ $$$$\Rightarrow\left({y}−{a}\right)\left({y}−{b}\right)\:=\:\mathrm{0}\Rightarrow{a}+{b}\:=\:\mathrm{3} \\ $$$${A}=\mathrm{2021}^{{a}} \:;{B}\:=\:\mathrm{2021}^{{b}} \\ $$$$\Leftrightarrow{A}.{B}\:=\:\mathrm{2021}^{{a}+{b}} \:=\:\mathrm{2021}^{\mathrm{3}} \\ $$$$=\:\mathrm{21}^{\mathrm{3}} \:\left({mod}\:\mathrm{100}\right)\:=\:\mathrm{261}\:\left({mod}\right. \\ $$$$\left.\mathrm{1000}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *