Question Number 37568 by math khazana by abdo last updated on 15/Jun/18
$${let}\:\alpha\:{and}\:\beta\:{the}\:{roots}\:{of}\:{the}\:{equation} \\ $$$${x}^{\mathrm{2}} \:−\mathrm{2}{mx}\:−\mathrm{1}\:=\mathrm{0}\:\:{find}\:{interms}\:{of}\:{the}\:{real}\:{m} \\ $$$${A}\:=\:\alpha^{\mathrm{2}} \:+\beta^{\mathrm{2}} \\ $$$${B}\:=\alpha^{\mathrm{3}} \:+\beta^{\mathrm{3}} \\ $$$${c}\:=\alpha^{\mathrm{4}} \:+\beta^{\mathrm{4}} \\ $$$${D}=\:\alpha^{\mathrm{6}} \:+\beta^{\mathrm{6}} \\ $$
Answered by Rasheed.Sindhi last updated on 15/Jun/18
$$\alpha\:\&\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\:{x}^{\mathrm{2}} \:−\mathrm{2}{mx}\:−\mathrm{1}\:=\mathrm{0} \\ $$$$\therefore\:\alpha+\beta=\mathrm{2}{m} \\ $$$$\:\:\:\:\alpha\beta=−\mathrm{1} \\ $$$${A}=\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} =\left(\alpha+\beta\right)^{\mathrm{2}} −\mathrm{2}\alpha\beta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\left(\mathrm{2}{m}\right)^{\mathrm{2}} −\mathrm{2}\left(−\mathrm{1}\right)=\mathrm{4}{m}^{\mathrm{2}} +\mathrm{2} \\ $$$${B}=\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} =\left(\alpha+\beta\right)^{\mathrm{3}} −\mathrm{3}\alpha\beta\left(\alpha+\beta\right) \\ $$$$\:\:\:\:\:\:\:=\left(\mathrm{2}{m}\right)^{\mathrm{3}} −\mathrm{3}\left(−\mathrm{1}\right)\left(\mathrm{2}{m}\right)=\mathrm{8}{m}^{\mathrm{3}} +\mathrm{6}{m} \\ $$$${C}=\alpha^{\mathrm{4}} +\beta^{\mathrm{4}} =\left(\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}\left(\alpha\beta\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:=\left(\mathrm{4}{m}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2}\left(−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:=\mathrm{16}{m}^{\mathrm{4}} +\mathrm{16}{m}^{\mathrm{2}} +\mathrm{2} \\ $$$${D}=\alpha^{\mathrm{6}} +\beta^{\mathrm{6}} =\left(\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} \right)^{\mathrm{2}} −\mathrm{2}\left(\alpha\beta\right)^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:=\left(\mathrm{8}{m}^{\mathrm{3}} +\mathrm{6}{m}\right)^{\mathrm{2}} −\mathrm{2}\left(−\mathrm{1}\right)^{\mathrm{3}} \\ $$$$\:\:\:\:\:=\mathrm{64}{m}^{\mathrm{6}} +\mathrm{96}{m}^{\mathrm{3}} +\mathrm{36}{m}^{\mathrm{2}} +\mathrm{2} \\ $$
Answered by Rio Mike last updated on 16/Jun/18
$$\left.\mathrm{a}\right)\alpha^{\mathrm{2}} +\:\beta^{\mathrm{2}} =\:\left(\alpha+\beta\right)^{\mathrm{2}} −\mathrm{2}\alpha\beta \\ $$$$\left(\alpha+\beta\right)^{\mathrm{2}} =\:\left(\alpha+\beta\right)\left(\alpha+\beta\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\alpha^{\mathrm{2}} +\:\alpha\beta\:+\:\alpha\beta\:+\:\beta^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\alpha^{\mathrm{2}} +\beta^{\mathrm{2}\:} +\:\mathrm{2}\alpha\beta\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left(\alpha+\beta\right)\:−\:\mathrm{2}\alpha\beta \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{2mx}−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{S}_{\mathrm{r}} =\:^{} \alpha+\beta=\:\frac{−\mathrm{b}}{\mathrm{a}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{2m} \\ $$$$\mathrm{P}_{\mathrm{r}} =\:\alpha\beta=\frac{\mathrm{c}}{\mathrm{a}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\:−\mathrm{1} \\ $$$$\Rightarrow\:\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} =\:\left(\mathrm{2m}\right)^{\mathrm{2}} −\mathrm{2}\left(−\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\:\mathrm{4m}^{\mathrm{2}} +\mathrm{2} \\ $$$$ \\ $$$$\: \\ $$$$ \\ $$$$ \\ $$