Question Number 37635 by math khazana by abdo last updated on 16/Jun/18
$${let}\:{a}>\mathrm{0}\:\:{find}\:{the}\:{value}\:{of}\: \\ $$$${f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{+\infty} \:{e}^{−\left({t}^{\mathrm{2}} \:\:+\frac{{a}}{{t}^{\mathrm{2}} }\right)} {dt}\: \\ $$
Commented by prof Abdo imad last updated on 17/Jun/18
$${we}\:{have}\:\mathrm{2}{f}\left({a}\right)=\:\int_{−\infty} ^{+\infty} \:\:{e}^{−\left\{\:\left({t}\:−\frac{\sqrt{{a}}}{{t}}\right)^{\mathrm{2}} \:+\mathrm{2}\sqrt{{a}}\right\}} {dt} \\ $$$$={e}^{−\mathrm{2}\sqrt{{a}}} \:\:\int_{−\infty} ^{+\infty} \:\:{e}^{−\left({t}−\frac{\sqrt{{a}}}{{t}}\right)^{\mathrm{2}} } {dt}\:\:{changement} \\ $$$${t}\:−\frac{\sqrt{{a}}}{{t}}={x}\:{give}\:{t}^{\mathrm{2}} \:−\sqrt{{a}}\:={xt}\:\Rightarrow \\ $$$${t}^{\mathrm{2}} \:−{xt}\:−\sqrt{{a}}\:=\mathrm{0} \\ $$$$\Delta={x}^{\mathrm{2}} \:+\mathrm{4}\sqrt{{a}\:}\Rightarrow{t}_{\mathrm{1}} =\:\frac{{x}\:+\sqrt{{x}^{\mathrm{2}} \:+\mathrm{4}\sqrt{{a}}}}{\mathrm{2}} \\ $$$${t}_{\mathrm{2}} =\frac{{x}−\sqrt{{x}^{\mathrm{2}} \:+\mathrm{4}\sqrt{{a}}}}{\mathrm{2}}\:{let}\:{take}\:{t}=\:\frac{{x}\:+\sqrt{{x}^{\mathrm{2}\:} \:+\mathrm{4}\sqrt{{a}}}}{\mathrm{2}}\:\Rightarrow \\ $$$${dt}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left\{\mathrm{1}\:+\:\:\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} \:+\mathrm{4}\sqrt{{a}}}}\right\}\:\Rightarrow \\ $$$$\mathrm{2}{f}\left({a}\right)\:=\:\frac{{e}^{−\mathrm{2}\sqrt{{a}}} }{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \:\:{e}^{−{x}^{\mathrm{2}} } \left\{\:\mathrm{1}+\:\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} \:+\mathrm{4}\sqrt{{a}}}}\right\}{dx} \\ $$$$=\:\frac{{e}^{−\mathrm{2}\sqrt{{a}}} }{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}} } {dx}\:\:+\:\frac{{e}^{−\mathrm{2}\sqrt{{a}}} }{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{x}\:{e}^{−{x}^{\mathrm{2}} } }{\:\sqrt{{x}^{\mathrm{2}} \:+\mathrm{4}\sqrt{{a}}}}{dx} \\ $$$$=\frac{\sqrt{\pi}\:{e}^{−\mathrm{2}\sqrt{{a}}} }{\mathrm{2}}\:+\mathrm{0}\:\Rightarrow \\ $$$${f}\left({a}\right)\:=\:\frac{{e}^{−\mathrm{2}\sqrt{{a}}} }{\mathrm{4}}\:\sqrt{\pi\:}. \\ $$