Menu Close

Question-168737




Question Number 168737 by infinityaction last updated on 16/Apr/22
Commented by infinityaction last updated on 16/Apr/22
find the value of x
$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{x}} \\ $$
Answered by mr W last updated on 17/Apr/22
AD=BC=1  ((BD)/(sin 54°))=(1/(sin 84°))  ((sin x)/(BD))=((sin 30°)/1)  sin x=((sin 54° sin 30°)/(sin 84°))  ⇒x=24°
$${AD}={BC}=\mathrm{1} \\ $$$$\frac{{BD}}{\mathrm{sin}\:\mathrm{54}°}=\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{84}°} \\ $$$$\frac{\mathrm{sin}\:{x}}{{BD}}=\frac{\mathrm{sin}\:\mathrm{30}°}{\mathrm{1}} \\ $$$$\mathrm{sin}\:{x}=\frac{\mathrm{sin}\:\mathrm{54}°\:\mathrm{sin}\:\mathrm{30}°}{\mathrm{sin}\:\mathrm{84}°} \\ $$$$\Rightarrow{x}=\mathrm{24}° \\ $$
Commented by infinityaction last updated on 17/Apr/22
sir solve this equation ((sin54°  sin30° )/(sin 84°))
$${sir}\:{solve}\:{this}\:{equation}\:\frac{\mathrm{sin54}°\:\:\mathrm{sin30}°\:}{\mathrm{sin}\:\mathrm{84}°} \\ $$
Commented by som(math1967) last updated on 17/Apr/22
sin24((sin54sin30)/(sin24sin84))  sin24(((2sin54cos60)/(2sin24cos6)))  =sin24(((sin114−sin6)/(sin30+sin18)))  =sin24(((sin66−sin6)/((1/2)+(((√5)−1)/4))))  =sin24(((2sin30cos36)/(((√5)+1)/4)))  =sin24×((cos36)/(cos36))=sin24  ∴sinx=sin24⇒x=24
$${sin}\mathrm{24}\frac{{sin}\mathrm{54}{sin}\mathrm{30}}{{sin}\mathrm{24}{sin}\mathrm{84}} \\ $$$${sin}\mathrm{24}\left(\frac{\mathrm{2}{sin}\mathrm{54}{cos}\mathrm{60}}{\mathrm{2}{sin}\mathrm{24}{cos}\mathrm{6}}\right) \\ $$$$={sin}\mathrm{24}\left(\frac{{sin}\mathrm{114}−{sin}\mathrm{6}}{{sin}\mathrm{30}+{sin}\mathrm{18}}\right) \\ $$$$={sin}\mathrm{24}\left(\frac{{sin}\mathrm{66}−{sin}\mathrm{6}}{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}}\right) \\ $$$$={sin}\mathrm{24}\left(\frac{\mathrm{2}{sin}\mathrm{30}{cos}\mathrm{36}}{\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{4}}}\right) \\ $$$$={sin}\mathrm{24}×\frac{{cos}\mathrm{36}}{{cos}\mathrm{36}}={sin}\mathrm{24} \\ $$$$\therefore{sinx}={sin}\mathrm{24}\Rightarrow\boldsymbol{{x}}=\mathrm{24} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *