Menu Close

from-letters-in-MATEMATIKA-words-formed-by-using-all-the-letters-How-many-words-that-can-be-formed-with-the-five-consonant-are-always-side-by-side-




Question Number 103294 by bramlex last updated on 14/Jul/20
from letters in  ′MATEMATIKA′ words  formed by using all the letters .  How many words that can be  formed with the five consonant  are always side by side
$$\mathrm{from}\:\mathrm{letters}\:\mathrm{in} \\ $$$$'\mathrm{MATEMATIKA}'\:\mathrm{words} \\ $$$$\mathrm{formed}\:\mathrm{by}\:\mathrm{using}\:\mathrm{all}\:\mathrm{the}\:\mathrm{letters}\:. \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{words}\:\mathrm{that}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{formed}\:\mathrm{with}\:\mathrm{the}\:\mathrm{five}\:\mathrm{consonant} \\ $$$$\mathrm{are}\:\mathrm{always}\:\mathrm{side}\:\mathrm{by}\:\mathrm{side}\: \\ $$
Answered by bemath last updated on 14/Jul/20
⇒ ((5!)/(2!.2!.1!)) × ((6!)/(3!.1!.1!)) =   ((120)/4) × ((6.5.4.3!)/(3!)) = 30×120 = 3600
$$\Rightarrow\:\frac{\mathrm{5}!}{\mathrm{2}!.\mathrm{2}!.\mathrm{1}!}\:×\:\frac{\mathrm{6}!}{\mathrm{3}!.\mathrm{1}!.\mathrm{1}!}\:=\: \\ $$$$\frac{\mathrm{120}}{\mathrm{4}}\:×\:\frac{\mathrm{6}.\mathrm{5}.\mathrm{4}.\mathrm{3}!}{\mathrm{3}!}\:=\:\mathrm{30}×\mathrm{120}\:=\:\mathrm{3600} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *