Menu Close

calculate-f-0-e-x-cos-pi-x-dx-with-gt-0-




Question Number 37898 by abdo mathsup 649 cc last updated on 19/Jun/18
calculate f(λ) = ∫_0 ^(+∞)   e^(−λx)  cos(π[x])dx  withλ>0
$${calculate}\:{f}\left(\lambda\right)\:=\:\int_{\mathrm{0}} ^{+\infty} \:\:{e}^{−\lambda{x}} \:{cos}\left(\pi\left[{x}\right]\right){dx} \\ $$$${with}\lambda>\mathrm{0} \\ $$
Commented by prof Abdo imad last updated on 19/Jun/18
f(λ)=Σ_(n=0) ^∞   ∫_n ^(n+1)  e^(−λx)  cos(nπ)dx  =Σ_(n=0) ^∞ (−1)^n   ∫_n ^(n+1)  e^(−λx) dx  =Σ_(n=0) ^∞  (−1)^n [−(1/λ) e^(−λx) ]_n ^(n+1)   =(1/λ)Σ_(n=0) ^∞  (−1)^(n+1)  ( e^(−λ(n+1))  −e^(−λn) )  =(1/λ)Σ_(n=0) ^∞   (−1)^n  e^(−λn)  −(1/λ)Σ_(n=0) ^∞  (−1)^n  e^(−λ(n+1))   =(1/λ) Σ_(n=0) ^∞  (−e^(−λ) )^n   −(e^(−λ) /λ) Σ_(n=0) ^∞  (−e^(−λ) )^n   =((1−e^(−λ) )/λ)  (1/(1+e^(−λ) )) ⇒  f(λ) = ((1−e^(−λ) )/(λ(1+e^(−λ) )))
$${f}\left(\lambda\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\int_{{n}} ^{{n}+\mathrm{1}} \:{e}^{−\lambda{x}} \:{cos}\left({n}\pi\right){dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:\:\int_{{n}} ^{{n}+\mathrm{1}} \:{e}^{−\lambda{x}} {dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \left[−\frac{\mathrm{1}}{\lambda}\:{e}^{−\lambda{x}} \right]_{{n}} ^{{n}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\lambda}\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \:\left(\:{e}^{−\lambda\left({n}+\mathrm{1}\right)} \:−{e}^{−\lambda{n}} \right) \\ $$$$=\frac{\mathrm{1}}{\lambda}\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\left(−\mathrm{1}\right)^{{n}} \:{e}^{−\lambda{n}} \:−\frac{\mathrm{1}}{\lambda}\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{e}^{−\lambda\left({n}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{\lambda}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−{e}^{−\lambda} \right)^{{n}} \:\:−\frac{{e}^{−\lambda} }{\lambda}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−{e}^{−\lambda} \right)^{{n}} \\ $$$$=\frac{\mathrm{1}−{e}^{−\lambda} }{\lambda}\:\:\frac{\mathrm{1}}{\mathrm{1}+{e}^{−\lambda} }\:\Rightarrow \\ $$$${f}\left(\lambda\right)\:=\:\frac{\mathrm{1}−{e}^{−\lambda} }{\lambda\left(\mathrm{1}+{e}^{−\lambda} \right)} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18
[x]=0    1>x≥0  [x]=1   2>x≥1  [x]=2  3>x≥2    thus the value of Π[x] is intregal multiple of  Π...hence value of cos(Π[x]) oscillates  eitther +1 or −1  so the given intregal has two value  1)∫_0 ^(+∞) e^(−λx) ×1×dx  =∣(e^(−λx) /(−λ))∣_0 ^∞   =((−1)/λ)((1/e^∞ )−(1/e^0 ))=(1/λ)  2)∫_0 ^(+∞) e^(−λx) ×−1×dx  =−1×∣(e^(−λx) /(−λ))∣_0 ^∞  =(1/λ)((1/e^∞ )−(1/e^0 ))=−(1/λ)
$$\left[{x}\right]=\mathrm{0}\:\:\:\:\mathrm{1}>{x}\geqslant\mathrm{0} \\ $$$$\left[{x}\right]=\mathrm{1}\:\:\:\mathrm{2}>{x}\geqslant\mathrm{1} \\ $$$$\left[{x}\right]=\mathrm{2}\:\:\mathrm{3}>{x}\geqslant\mathrm{2} \\ $$$$ \\ $$$${thus}\:{the}\:{value}\:{of}\:\Pi\left[{x}\right]\:{is}\:{intregal}\:{multiple}\:{of} \\ $$$$\Pi…{hence}\:{value}\:{of}\:{cos}\left(\Pi\left[{x}\right]\right)\:{oscillates} \\ $$$${eitther}\:+\mathrm{1}\:{or}\:−\mathrm{1} \\ $$$${so}\:{the}\:{given}\:{intregal}\:{has}\:{two}\:{value} \\ $$$$\left.\mathrm{1}\right)\int_{\mathrm{0}} ^{+\infty} {e}^{−\lambda{x}} ×\mathrm{1}×{dx} \\ $$$$=\mid\frac{{e}^{−\lambda{x}} }{−\lambda}\mid_{\mathrm{0}} ^{\infty} \\ $$$$=\frac{−\mathrm{1}}{\lambda}\left(\frac{\mathrm{1}}{{e}^{\infty} }−\frac{\mathrm{1}}{{e}^{\mathrm{0}} }\right)=\frac{\mathrm{1}}{\lambda} \\ $$$$\left.\mathrm{2}\right)\int_{\mathrm{0}} ^{+\infty} {e}^{−\lambda{x}} ×−\mathrm{1}×{dx} \\ $$$$=−\mathrm{1}×\mid\frac{{e}^{−\lambda{x}} }{−\lambda}\mid_{\mathrm{0}} ^{\infty} \:=\frac{\mathrm{1}}{\lambda}\left(\frac{\mathrm{1}}{{e}^{\infty} }−\frac{\mathrm{1}}{{e}^{\mathrm{0}} }\right)=−\frac{\mathrm{1}}{\lambda} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *