Question Number 37898 by abdo mathsup 649 cc last updated on 19/Jun/18
$${calculate}\:{f}\left(\lambda\right)\:=\:\int_{\mathrm{0}} ^{+\infty} \:\:{e}^{−\lambda{x}} \:{cos}\left(\pi\left[{x}\right]\right){dx} \\ $$$${with}\lambda>\mathrm{0} \\ $$
Commented by prof Abdo imad last updated on 19/Jun/18
$${f}\left(\lambda\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\int_{{n}} ^{{n}+\mathrm{1}} \:{e}^{−\lambda{x}} \:{cos}\left({n}\pi\right){dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:\:\int_{{n}} ^{{n}+\mathrm{1}} \:{e}^{−\lambda{x}} {dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \left[−\frac{\mathrm{1}}{\lambda}\:{e}^{−\lambda{x}} \right]_{{n}} ^{{n}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\lambda}\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \:\left(\:{e}^{−\lambda\left({n}+\mathrm{1}\right)} \:−{e}^{−\lambda{n}} \right) \\ $$$$=\frac{\mathrm{1}}{\lambda}\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\left(−\mathrm{1}\right)^{{n}} \:{e}^{−\lambda{n}} \:−\frac{\mathrm{1}}{\lambda}\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{e}^{−\lambda\left({n}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{\lambda}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−{e}^{−\lambda} \right)^{{n}} \:\:−\frac{{e}^{−\lambda} }{\lambda}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−{e}^{−\lambda} \right)^{{n}} \\ $$$$=\frac{\mathrm{1}−{e}^{−\lambda} }{\lambda}\:\:\frac{\mathrm{1}}{\mathrm{1}+{e}^{−\lambda} }\:\Rightarrow \\ $$$${f}\left(\lambda\right)\:=\:\frac{\mathrm{1}−{e}^{−\lambda} }{\lambda\left(\mathrm{1}+{e}^{−\lambda} \right)} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18
$$\left[{x}\right]=\mathrm{0}\:\:\:\:\mathrm{1}>{x}\geqslant\mathrm{0} \\ $$$$\left[{x}\right]=\mathrm{1}\:\:\:\mathrm{2}>{x}\geqslant\mathrm{1} \\ $$$$\left[{x}\right]=\mathrm{2}\:\:\mathrm{3}>{x}\geqslant\mathrm{2} \\ $$$$ \\ $$$${thus}\:{the}\:{value}\:{of}\:\Pi\left[{x}\right]\:{is}\:{intregal}\:{multiple}\:{of} \\ $$$$\Pi…{hence}\:{value}\:{of}\:{cos}\left(\Pi\left[{x}\right]\right)\:{oscillates} \\ $$$${eitther}\:+\mathrm{1}\:{or}\:−\mathrm{1} \\ $$$${so}\:{the}\:{given}\:{intregal}\:{has}\:{two}\:{value} \\ $$$$\left.\mathrm{1}\right)\int_{\mathrm{0}} ^{+\infty} {e}^{−\lambda{x}} ×\mathrm{1}×{dx} \\ $$$$=\mid\frac{{e}^{−\lambda{x}} }{−\lambda}\mid_{\mathrm{0}} ^{\infty} \\ $$$$=\frac{−\mathrm{1}}{\lambda}\left(\frac{\mathrm{1}}{{e}^{\infty} }−\frac{\mathrm{1}}{{e}^{\mathrm{0}} }\right)=\frac{\mathrm{1}}{\lambda} \\ $$$$\left.\mathrm{2}\right)\int_{\mathrm{0}} ^{+\infty} {e}^{−\lambda{x}} ×−\mathrm{1}×{dx} \\ $$$$=−\mathrm{1}×\mid\frac{{e}^{−\lambda{x}} }{−\lambda}\mid_{\mathrm{0}} ^{\infty} \:=\frac{\mathrm{1}}{\lambda}\left(\frac{\mathrm{1}}{{e}^{\infty} }−\frac{\mathrm{1}}{{e}^{\mathrm{0}} }\right)=−\frac{\mathrm{1}}{\lambda} \\ $$$$ \\ $$