Menu Close

x-2-2x-4-3x-6-1-x-2-x-4-dx-




Question Number 103454 by bemath last updated on 15/Jul/20
∫ (x^2 +2x^4 +3x^6 )(√(1+x^2 +x^4 )) dx
$$\int\:\left({x}^{\mathrm{2}} +\mathrm{2}{x}^{\mathrm{4}} +\mathrm{3}{x}^{\mathrm{6}} \right)\sqrt{\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{4}} }\:{dx}\: \\ $$
Answered by bobhans last updated on 15/Jul/20
I=∫x(x+2x^3 +3x^5 )(√(1+x^2 +x^4 )) dx   I= ∫(x+2x^3 +3x^5 )(√(x^2 +x^4 +x^6 )) dx   set r = x^2 +x^4 +x^6    I=∫(1/2)t^(1/2)  dt = (1/3)t^(3/2)  + C  I= (1/3)(x^2 +x^4 +x^6 )^(3/2)  + C   (⊝)
$${I}=\int{x}\left({x}+\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{5}} \right)\sqrt{\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{4}} }\:{dx}\: \\ $$$${I}=\:\int\left({x}+\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{5}} \right)\sqrt{{x}^{\mathrm{2}} +{x}^{\mathrm{4}} +{x}^{\mathrm{6}} }\:{dx}\: \\ $$$${set}\:{r}\:=\:{x}^{\mathrm{2}} +{x}^{\mathrm{4}} +{x}^{\mathrm{6}} \: \\ $$$${I}=\int\frac{\mathrm{1}}{\mathrm{2}}{t}^{\frac{\mathrm{1}}{\mathrm{2}}} \:{dt}\:=\:\frac{\mathrm{1}}{\mathrm{3}}{t}^{\frac{\mathrm{3}}{\mathrm{2}}} \:+\:{C} \\ $$$${I}=\:\frac{\mathrm{1}}{\mathrm{3}}\left({x}^{\mathrm{2}} +{x}^{\mathrm{4}} +{x}^{\mathrm{6}} \right)^{\mathrm{3}/\mathrm{2}} \:+\:{C}\:\:\:\left(\circleddash\right)\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *