Menu Close

dx-x-x-1-4-1-a-9-x-1-4-1-18-x-1-4-1-9-c-b-9-x-1-4-1-18-x-1-4-1-9-c-c-9-x-1-4-1-18-x-1-4-1-9-c-d-9-x-




Question Number 103511 by bemath last updated on 15/Jul/20
∫ (dx/( (√x) ((x)^(1/4)  +1))) =__  (a) −((9 (x)^(1/4)  +1)/(18((x)^(1/4)  +1)^9 )) + c   (b) ((9 (x)^(1/4)  +1)/(18((x)^(1/4) +1)^9 )) +c  (c) −((9 (x)^(1/4)  −1)/(18((x)^(1/4)  +1)^9 )) +c  (d) ((9 (x)^(1/4) +1)/(8((x)^(1/4)  +1)^9 )) + c
$$\int\:\frac{{dx}}{\:\sqrt{{x}}\:\left(\sqrt[{\mathrm{4}}]{{x}}\:+\mathrm{1}\right)}\:=\_\_ \\ $$$$\left({a}\right)\:−\frac{\mathrm{9}\:\sqrt[{\mathrm{4}}]{{x}}\:+\mathrm{1}}{\mathrm{18}\left(\sqrt[{\mathrm{4}}]{{x}}\:+\mathrm{1}\right)^{\mathrm{9}} }\:+\:{c}\: \\ $$$$\left({b}\right)\:\frac{\mathrm{9}\:\sqrt[{\mathrm{4}}]{{x}}\:+\mathrm{1}}{\mathrm{18}\left(\sqrt[{\mathrm{4}}]{{x}}+\mathrm{1}\right)^{\mathrm{9}} }\:+{c} \\ $$$$\left({c}\right)\:−\frac{\mathrm{9}\:\sqrt[{\mathrm{4}}]{{x}}\:−\mathrm{1}}{\mathrm{18}\left(\sqrt[{\mathrm{4}}]{{x}}\:+\mathrm{1}\right)^{\mathrm{9}} }\:+{c} \\ $$$$\left({d}\right)\:\frac{\mathrm{9}\:\sqrt[{\mathrm{4}}]{{x}}+\mathrm{1}}{\mathrm{8}\left(\sqrt[{\mathrm{4}}]{{x}}\:+\mathrm{1}\right)^{\mathrm{9}} }\:+\:{c} \\ $$
Commented by bobhans last updated on 15/Jul/20
nothing answer
$${nothing}\:{answer} \\ $$
Answered by bramlex last updated on 15/Jul/20
let t = 1+(x)^(1/4)  ⇒(x)^(1/4)  = t−1  x= (t−1)^4  ∧ (√x) = (t−1)^2   dx = 4(t−1)^3  dt   I= ∫ ((4(t−1)^3  dt)/((t−1)^2 .t ))= 4∫ ((t−1)/t) dt  = 4∫(1−(1/t)) dt   = 4t − 4ln∣t∣ +c   = 4(1+(x)^(1/4) )−4ln∣1+(x)^(1/4)  ∣ + c
$$\mathrm{let}\:\mathrm{t}\:=\:\mathrm{1}+\sqrt[{\mathrm{4}}]{\mathrm{x}}\:\Rightarrow\sqrt[{\mathrm{4}}]{\mathrm{x}}\:=\:\mathrm{t}−\mathrm{1} \\ $$$$\mathrm{x}=\:\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{4}} \:\wedge\:\sqrt{\mathrm{x}}\:=\:\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{dx}\:=\:\mathrm{4}\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{3}} \:\mathrm{dt}\: \\ $$$$\mathrm{I}=\:\int\:\frac{\mathrm{4}\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{3}} \:\mathrm{dt}}{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} .\mathrm{t}\:}=\:\mathrm{4}\int\:\frac{\mathrm{t}−\mathrm{1}}{\mathrm{t}}\:\mathrm{dt} \\ $$$$=\:\mathrm{4}\int\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{t}}\right)\:\mathrm{dt}\: \\ $$$$=\:\mathrm{4t}\:−\:\mathrm{4ln}\mid\mathrm{t}\mid\:+\mathrm{c}\: \\ $$$$=\:\mathrm{4}\left(\mathrm{1}+\sqrt[{\mathrm{4}}]{\mathrm{x}}\right)−\mathrm{4ln}\mid\mathrm{1}+\sqrt[{\mathrm{4}}]{\mathrm{x}}\:\mid\:+\:\mathrm{c}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *