Question Number 69261 by mathmax by abdo last updated on 22/Sep/19
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{xtanx}\:{dx} \\ $$
Answered by mind is power last updated on 23/Sep/19
$$=\int_{\mathrm{0}} ^{\mathrm{1}} {x}\frac{{e}^{{ix}} −{e}^{−{ix}} }{{i}\left({e}^{{ix}} +{e}^{−{ix}} \right)}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}}{{i}}\left(\mathrm{1}−\frac{\mathrm{2}{e}^{−{ix}} }{{e}^{{ix}} +{e}^{−{ix}} }\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}}{{i}}−\frac{\mathrm{2}}{{i}}\int{x}\frac{{e}^{−\mathrm{2}{ix}} }{\mathrm{1}+{e}^{−\mathrm{2}{ix}} }{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}−\frac{\mathrm{2}}{{i}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{xe}^{−\mathrm{2}{ix}} }{\mathrm{1}+{e}^{−\mathrm{2}{ix}} }{dx}…{a} \\ $$$${u}'=\frac{{e}^{−\mathrm{2}{ix}} }{\mathrm{1}+{e}^{−\mathrm{2}{ix}} }\:\:\:\:{v}={x} \\ $$$${u}=\frac{−\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{ix}} \right)\:\:{v}'=\mathrm{1} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{xe}^{−\mathrm{2}{ix}} }{\mathrm{1}+{e}^{−\mathrm{2}{ix}} }{dx}=\left[\frac{−{x}}{\mathrm{2}{i}}{ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{ix}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{2}{i}}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{ix}} \right){dx} \\ $$$$=−\frac{{ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{i}} \right)}{\mathrm{2}{i}}+\frac{\mathrm{1}}{\mathrm{2}{i}}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\frac{\mathrm{1}+{e}^{\mathrm{2}{ix}} }{{e}^{\mathrm{2}{ix}} }\right){dx} \\ $$$$=−\frac{{ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{i}} \right)}{\mathrm{2}{i}}+\frac{\mathrm{1}}{\mathrm{2}{i}}\int_{\mathrm{0}} ^{\mathrm{1}} \left\{{ln}\left(\mathrm{1}+{e}^{\mathrm{2}{ix}} \right)−{ln}\left({e}^{\mathrm{2}{ix}} \right)\right\}{dx} \\ $$$$=−\frac{{ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{i}} \right)}{\mathrm{2}{i}}+\frac{\mathrm{1}}{\mathrm{2}{i}}\int_{\mathrm{0}} ^{\mathrm{1}} \left\{\sum_{{n}\geqslant\mathrm{1}} \frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {e}^{\mathrm{2}{inx}} }{{n}}−\mathrm{2}{ix}\right\}{dx} \\ $$$$=−\frac{{ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{i}} \right)}{\mathrm{2}{i}}+\frac{\mathrm{1}}{\mathrm{2}{i}}\sum_{{n}\geqslant\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {e}^{\mathrm{2}{inx}} }{{n}}{dx}−\int_{\mathrm{0}} ^{\mathrm{1}} {xdx} \\ $$$$=−\frac{{ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{i}} \right)}{\mathrm{2}{i}}+\frac{\mathrm{1}}{\mathrm{2}{i}}\sum_{{n}\geqslant\mathrm{1}} \left[\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {e}^{\mathrm{2}{inx}} }{\mathrm{2}{in}^{\mathrm{2}} }\right]_{\mathrm{0}} ^{\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$=−\frac{{ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{i}} \right)}{\mathrm{2}{i}}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}{i}}\sum_{{n}\geqslant\mathrm{1}} \frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {e}^{\mathrm{2}{in}} }{\mathrm{2}{in}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}{i}}\sum_{{n}\geqslant\mathrm{1}} \frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{in}^{\mathrm{2}} } \\ $$$$=−\frac{{ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{i}} \right)}{\mathrm{2}{i}}−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}{i}}\sum_{{n}\geqslant\mathrm{1}} \frac{\left(−{e}^{\mathrm{2}{i}} \right)^{{n}} }{\mathrm{2}{in}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}{i}}\sum_{{n}\geqslant\mathrm{1}} \frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{in}^{\mathrm{2}} }=..{b} \\ $$$$\sum_{{n}\geqslant\mathrm{1}} \frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} }=\sum_{{k}\geqslant\mathrm{0}} \frac{−\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right)^{\mathrm{2}} }+\sum_{{k}\geqslant\mathrm{1}} \frac{\mathrm{1}}{\mathrm{4}{k}^{\mathrm{2}} } \\ $$$$\sum_{{k}\geqslant\mathrm{1}} \frac{\mathrm{1}}{{k}^{\mathrm{2}} }=\sum_{{k}\geqslant\mathrm{1}} \frac{\mathrm{1}}{\mathrm{4}{k}^{\mathrm{2}} }+\sum_{{k}\geqslant\mathrm{0}} \frac{\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right)^{\mathrm{2}} }\Rightarrow\sum_{{k}\geqslant\mathrm{1}} \frac{\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$$\Rightarrow\sum_{{n}\geqslant\mathrm{1}} \frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{24}}−\frac{\pi^{\mathrm{2}} }{\mathrm{8}}=−\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$$$\Rightarrow{b}=−\frac{{ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{i}} \right)}{\mathrm{2}{i}}−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}{i}}\sum_{{n}\geqslant\mathrm{1}} \frac{\left(−{e}^{\mathrm{2}{i}} \right)^{{n}} }{\mathrm{2}{in}^{\mathrm{2}} }−\frac{\pi^{\mathrm{2}} }{\mathrm{48}} \\ $$$${Li}_{\mathrm{2}} \left({x}\right)=\sum_{{n}\geqslant\mathrm{1}} \frac{\left({x}\right)^{{n}} }{{n}^{\mathrm{2}} }\Rightarrow\sum_{{n}\geqslant\mathrm{1}} \frac{\left(−{e}^{\mathrm{2}{i}} \right)^{{n}} }{{n}^{\mathrm{2}} }={Li}_{\mathrm{2}} \left(−{e}^{\mathrm{2}{i}} \right) \\ $$$$\Rightarrow{b}=−\frac{{ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{i}} \right)}{\mathrm{2}{i}}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{{Li}_{\mathrm{2}} \left(−{e}^{\mathrm{2}{i}} \right)}{\mathrm{4}}+\frac{\pi^{\mathrm{2}} }{\mathrm{48}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}{i}}−\frac{\mathrm{2}}{{i}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{xe}^{−\mathrm{2}{ix}} }{\mathrm{1}+{e}^{−\mathrm{2}{ix}} }{dx}=\frac{\mathrm{1}}{\mathrm{2}{i}}−\frac{\mathrm{2}}{{i}}\left(−\frac{{ln}\left(\mathrm{1}+{e}^{\mathrm{2}{i}} \right)}{\mathrm{2}{i}}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{{Li}_{\mathrm{2}} \left(−{e}^{\mathrm{2}{i}} \right)}{\mathrm{4}}+\frac{\pi^{\mathrm{2}} }{\mathrm{48}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}−{ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{i}} \right)+\frac{\mathrm{1}}{{i}}−\frac{{Li}_{\mathrm{2}} \left(−{e}^{\mathrm{2}{i}} \right)}{\mathrm{2}{i}}−\frac{\pi^{\mathrm{2}} }{{i}\mathrm{24}} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}{i}}−{ln}\left({e}^{\mathrm{2}{i}} +\mathrm{1}\right)+{ln}\left({e}^{−\mathrm{2}{i}} \right)−\frac{{Li}_{\mathrm{2}} \left(−{e}^{\mathrm{2}{i}} \right)}{\mathrm{2}{i}}+\frac{{i}\pi^{\mathrm{2}} }{\mathrm{24}} \\ $$$$=\frac{{i}}{\mathrm{2}}−{log}\left(\mathrm{1}+{e}^{\mathrm{2}{i}} \right)+{i}\frac{{Li}_{\mathrm{2}} \left(−{e}^{\mathrm{2}{i}} \right)}{\mathrm{2}}+{i}\frac{\pi^{\mathrm{2}} }{\mathrm{24}} \\ $$$$=\frac{{i}}{\mathrm{24}}\left(\pi^{\mathrm{2}} +\mathrm{12}\left({Li}_{\mathrm{2}} \left(−{e}^{\mathrm{2}{i}} \right)+\mathrm{1}+{ilog}\left(\mathrm{1}+{e}^{\mathrm{2}{i}} \right)\right)\right) \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 24/Sep/19
$${thank}\:{you}\:{sir}. \\ $$
Commented by mind is power last updated on 24/Sep/19
$${y}'{re}\:{welcom} \\ $$