Menu Close

prove-that-a-3-1-x-2-dx-1-3-2x-1-dx-b-2-0-xdx-0-2-x-2-x-dx-c-1-4-x-2-2-dx-2-5-2x-5-dx-d-pi-3pi-4-cos-2x-dx-3pi-4-pi-sin-2x-dx-




Question Number 103669 by 175mohamed last updated on 16/Jul/20
prove that :  a) ∫_(−3) ^(−1) x^2 dx ≥∫_1 ^3 (2x−1)dx  b)∫_(−2) ^0 xdx ≤∫_0 ^2 (x^2  + x )dx  c)∫_1 ^4 (x^2  + 2)dx  ≥∫_2 ^5 (2x −5)dx  d)∫_(−π) ^(−((3π)/4)) cos 2x dx ≥∫_((3π)/4) ^π sin 2x dx
$${prove}\:{that}\:: \\ $$$$\left.{a}\right)\:\int_{−\mathrm{3}} ^{−\mathrm{1}} {x}^{\mathrm{2}} {dx}\:\geqslant\int_{\mathrm{1}} ^{\mathrm{3}} \left(\mathrm{2}{x}−\mathrm{1}\right){dx} \\ $$$$\left.{b}\right)\int_{−\mathrm{2}} ^{\mathrm{0}} {xdx}\:\leqslant\int_{\mathrm{0}} ^{\mathrm{2}} \left({x}^{\mathrm{2}} \:+\:{x}\:\right){dx} \\ $$$$\left.{c}\right)\int_{\mathrm{1}} ^{\mathrm{4}} \left({x}^{\mathrm{2}} \:+\:\mathrm{2}\right){dx}\:\:\geqslant\int_{\mathrm{2}} ^{\mathrm{5}} \left(\mathrm{2}{x}\:−\mathrm{5}\right){dx} \\ $$$$\left.{d}\right)\int_{−\pi} ^{−\frac{\mathrm{3}\pi}{\mathrm{4}}} \mathrm{cos}\:\mathrm{2}{x}\:{dx}\:\geqslant\int_{\frac{\mathrm{3}\pi}{\mathrm{4}}} ^{\pi} \mathrm{sin}\:\mathrm{2}{x}\:{dx} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Answered by Aziztisffola last updated on 16/Jul/20
Just calculat each integral.
$$\mathrm{Just}\:\mathrm{calculat}\:\mathrm{each}\:\mathrm{integral}. \\ $$
Answered by abdomathmax last updated on 17/Jul/20
a) ∫_(−3) ^(−1)  x^2 dx =_(x=−t)     ∫_3 ^1 t^2 (−dt) =∫_1 ^3 t^2  dt   wehave x^2 ≥2x−1 ⇒∫_1 ^3 x^2 dx ≥∫_1 ^3 (2x−1)dx  ....
$$\left.\mathrm{a}\right)\:\int_{−\mathrm{3}} ^{−\mathrm{1}} \:\mathrm{x}^{\mathrm{2}} \mathrm{dx}\:=_{\mathrm{x}=−\mathrm{t}} \:\:\:\:\int_{\mathrm{3}} ^{\mathrm{1}} \mathrm{t}^{\mathrm{2}} \left(−\mathrm{dt}\right)\:=\int_{\mathrm{1}} ^{\mathrm{3}} \mathrm{t}^{\mathrm{2}} \:\mathrm{dt}\: \\ $$$$\mathrm{wehave}\:\mathrm{x}^{\mathrm{2}} \geqslant\mathrm{2x}−\mathrm{1}\:\Rightarrow\int_{\mathrm{1}} ^{\mathrm{3}} \mathrm{x}^{\mathrm{2}} \mathrm{dx}\:\geqslant\int_{\mathrm{1}} ^{\mathrm{3}} \left(\mathrm{2x}−\mathrm{1}\right)\mathrm{dx} \\ $$$$…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *