Question Number 169259 by mathlove last updated on 27/Apr/22
Commented by infinityaction last updated on 27/Apr/22
$$\:\:\:\:\:\:\:\:{I}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{ax}} }{{x}}\:{dx}\:\:\:\:\:\:{and}\:\:\:\:{I}\left({b}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{bx}} }{{x}}{dx} \\ $$$$\:\:\:\:\:\:{I}'\left({a}\right)\:\:=\:\:−\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}} {dx}\:\:\:\:,\:\:\:{I}'\left({b}\right)\:=\:−\int_{\mathrm{0}} ^{\infty} {e}^{−{bx}} {dx} \\ $$$$\:\:\:\:\:\:{I}'\left({a}\right)\:=\:\left[\frac{{e}^{−{ax}} }{{a}}\right]_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\:\:\:\:,\:\:\:{I}'\left({b}\right)\:=\:\left[\frac{{e}^{−{bx}} }{{b}}\right]_{\mathrm{0}} ^{\infty} \\ $$$$\:\:\:\:\:\:{I}'\left({a}\right)=\:−\frac{\mathrm{1}}{{a}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:,\:\:\:{I}'\left({b}\right)\:=−\:\frac{\mathrm{1}}{{b}} \\ $$$$\:\:\:\:\:{I}\left({a}\right)\:=\:−\mathrm{log}\:\mid{a}\mid\:\:\:\:\:,\:\:\:{I}\left({b}\right)\:=\:−\mathrm{log}\:\mid{b}\mid \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:{I}\left({a}\right)−{I}\left({b}\right)\:=\:\mathrm{log}\:\mid{b}\mid−\mathrm{log}\:\mid{a}\mid \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{I}\:\:=\:\:\mathrm{log}\:\mid\frac{{b}}{{a}}\mid \\ $$