Menu Close

let-a-from-R-find-F-a-t-cos-tx-a-2-x-2-dx-2-calculate-F-2-3-and-F-3-2-




Question Number 38466 by maxmathsup by imad last updated on 25/Jun/18
let a from R  find F_a (t)= ∫_(−∞) ^(+∞)   ((cos(tx))/(a^2  +x^2 ))dx  2) calculate F_2 (3)  and F_3 (2)
$${let}\:{a}\:{from}\:{R}\:\:{find}\:{F}_{{a}} \left({t}\right)=\:\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left({tx}\right)}{{a}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{F}_{\mathrm{2}} \left(\mathrm{3}\right)\:\:{and}\:{F}_{\mathrm{3}} \left(\mathrm{2}\right) \\ $$
Commented by math khazana by abdo last updated on 27/Jun/18
we have F_a (t)= Re( ∫_(−∞) ^(+∞)   (e^(itx) /(x^2  +a^2 ))dx)  let ϕ(z) = (e^(itz) /(z^(2 ) +a^2 ))  the poles of ϕ are ia and −ia  case1  a>0  ∫_(−∞) ^(+∞)   ϕ(z)dz=2iπ Res(ϕ,ia)=2iπ (e^(it(ia)) /(2ia))  =(π/a) e^(−at)  ⇒ F_a (t)=(π/a) e^(−at)   case2 a<0  ∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ Res(ϕ,−ia) =2iπ (e^(it(−ia)) /(−2ia))  =−(π/a) e^(at)  ⇒ F_a (t)=−(π/a) e^(at)   2) F_2 (3)=(π/2) e^(−6)    and F_3 (2)=(π/3) e^(−6)
$${we}\:{have}\:{F}_{{a}} \left({t}\right)=\:{Re}\left(\:\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{itx}} }{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx}\right) \\ $$$${let}\:\varphi\left({z}\right)\:=\:\frac{{e}^{{itz}} }{{z}^{\mathrm{2}\:} +{a}^{\mathrm{2}} }\:\:{the}\:{poles}\:{of}\:\varphi\:{are}\:{ia}\:{and}\:−{ia} \\ $$$${case}\mathrm{1}\:\:{a}>\mathrm{0} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{ia}\right)=\mathrm{2}{i}\pi\:\frac{{e}^{{it}\left({ia}\right)} }{\mathrm{2}{ia}} \\ $$$$=\frac{\pi}{{a}}\:{e}^{−{at}} \:\Rightarrow\:{F}_{{a}} \left({t}\right)=\frac{\pi}{{a}}\:{e}^{−{at}} \\ $$$${case}\mathrm{2}\:{a}<\mathrm{0} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}=\mathrm{2}{i}\pi\:{Res}\left(\varphi,−{ia}\right)\:=\mathrm{2}{i}\pi\:\frac{{e}^{{it}\left(−{ia}\right)} }{−\mathrm{2}{ia}} \\ $$$$=−\frac{\pi}{{a}}\:{e}^{{at}} \:\Rightarrow\:{F}_{{a}} \left({t}\right)=−\frac{\pi}{{a}}\:{e}^{{at}} \\ $$$$\left.\mathrm{2}\right)\:{F}_{\mathrm{2}} \left(\mathrm{3}\right)=\frac{\pi}{\mathrm{2}}\:{e}^{−\mathrm{6}} \:\:\:{and}\:{F}_{\mathrm{3}} \left(\mathrm{2}\right)=\frac{\pi}{\mathrm{3}}\:{e}^{−\mathrm{6}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *