Question Number 38469 by maxmathsup by imad last updated on 25/Jun/18
$${calculate}\:\:{f}\left({a}\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{sin}\left({ax}\right)}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{sin}\left(\mathrm{3}{x}\right)}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}{dx} \\ $$
Commented by math khazana by abdo last updated on 28/Jun/18
$$\left.\mathrm{1}\right)\:{f}\left({a}\right)=\:{Im}\left(\:\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{iax}} }{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}{dx}\right)\:{let}\:{consider} \\ $$$${the}\:{complex}\:{function}\:\varphi\left({z}\right)=\:\frac{{e}^{{iaz}} }{{z}^{\mathrm{2}} \:+{z}\:+\mathrm{1}} \\ $$$${the}\:{poles}\:{of}\:\varphi\:{are}\:{j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \:{and}\:\overset{−} {{j}}={e}^{−\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} \\ $$$${j}=−\frac{\mathrm{1}}{\mathrm{2}}\:+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{j}\right)\:{but}\: \\ $$$$\varphi\left({z}\right)=\frac{{e}^{{iaz}} }{\left({z}−{j}\right)\left({z}−\overset{−} {{j}}\right)}\:\Rightarrow{Res}\left(\varphi,{j}\right)=\:\frac{{e}^{{iaj}} }{{j}−\overset{−} {{j}}} \\ $$$$=\:\frac{{e}^{{ia}\left(−\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\right)} }{\mathrm{2}{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}\:=\:\frac{{e}^{−\frac{{a}\sqrt{\mathrm{3}}}{\mathrm{2}}} \left\{{cos}\left(\frac{{a}}{\mathrm{2}}\right)−{isin}\left(\frac{{a}}{\mathrm{2}}\right)\right\}}{{i}\sqrt{\mathrm{3}}}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{{e}^{−\frac{{a}\sqrt{\mathrm{3}}}{\mathrm{2}}} \left\{\:{cos}\left(\frac{{a}}{\mathrm{2}}\right)−{i}\:{sin}\left(\frac{{a}}{\mathrm{2}}\right)\right\}}{{i}\sqrt{\mathrm{3}}} \\ $$$$=\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{3}}}\:{e}^{−\frac{{a}\sqrt{\mathrm{3}}}{\mathrm{2}}} \left\{\:{cos}\left(\frac{{a}}{\mathrm{2}}\right)−{i}\:{sin}\left(\frac{{a}}{\mathrm{2}}\right)\right\}\Rightarrow \\ $$$${f}\left({a}\right)={Im}\left(\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\right)=−\frac{\mathrm{2}\pi}{\mathrm{3}}\:{e}^{−{a}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} \:{sin}\left(\frac{{a}}{\mathrm{2}}\right) \\ $$$$\left.\mathrm{2}\right)\:\int_{−\infty} ^{+\infty} \:\:\frac{{sin}\left(\mathrm{3}{x}\right)}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}{dx}=\mathrm{f}\left(\mathrm{3}\right)=−\frac{\mathrm{2}\pi}{\mathrm{3}}{e}^{−\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}}} \:{sin}\left(\frac{\mathrm{3}}{\mathrm{2}}\right). \\ $$