Menu Close

When-f-x-is-a-differentiable-function-satisfying-x-f-x-x-2-0-x-x-t-f-t-dt-Find-f-1-




Question Number 104383 by abony1303 last updated on 21/Jul/20
When f(x) is a differentiable function  satisfying  x∙f(x)=x^2 +∫_0 ^( x) (x−t)∙f ′(t)dt  Find ⇒ f(1)
$$\mathrm{When}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{differentiable}\:\mathrm{function} \\ $$$$\mathrm{satisfying}\:\:{x}\centerdot{f}\left({x}\right)={x}^{\mathrm{2}} +\int_{\mathrm{0}} ^{\:{x}} \left({x}−{t}\right)\centerdot{f}\:'\left({t}\right){dt} \\ $$$$\mathrm{Find}\:\Rightarrow\:{f}\left(\mathrm{1}\right) \\ $$
Commented by abony1303 last updated on 21/Jul/20
Pls help
$$\mathrm{Pls}\:\mathrm{help} \\ $$
Answered by mathmax by abdo last updated on 21/Jul/20
xf(x)=x^2  +∫_0 ^x (x−t)f^′ (t)dt   x=1 ⇒f(1) =1 +∫_0 ^1 (1−t)f^′ (t)dt  by parts  ∫_0 ^1 (1−t)f^′ (t)dt =[(1−t)f(t)]_0 ^1 −∫_0 ^1 (−1)f(t)dt  =f(0)+∫_0 ^1 f(t)dt  but f(0)=0 ⇒∫_0 ^1 (1−t)f^′ (t)dt =∫_0 ^1 f(t)dt ⇒  f(1) =1+∫_0 ^1 f(t)dt
$$\mathrm{xf}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{2}} \:+\int_{\mathrm{0}} ^{\mathrm{x}} \left(\mathrm{x}−\mathrm{t}\right)\mathrm{f}^{'} \left(\mathrm{t}\right)\mathrm{dt}\: \\ $$$$\mathrm{x}=\mathrm{1}\:\Rightarrow\mathrm{f}\left(\mathrm{1}\right)\:=\mathrm{1}\:+\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{t}\right)\mathrm{f}^{'} \left(\mathrm{t}\right)\mathrm{dt}\:\:\mathrm{by}\:\mathrm{parts} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{t}\right)\mathrm{f}^{'} \left(\mathrm{t}\right)\mathrm{dt}\:=\left[\left(\mathrm{1}−\mathrm{t}\right)\mathrm{f}\left(\mathrm{t}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \left(−\mathrm{1}\right)\mathrm{f}\left(\mathrm{t}\right)\mathrm{dt} \\ $$$$=\mathrm{f}\left(\mathrm{0}\right)+\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{f}\left(\mathrm{t}\right)\mathrm{dt}\:\:\mathrm{but}\:\mathrm{f}\left(\mathrm{0}\right)=\mathrm{0}\:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{t}\right)\mathrm{f}^{'} \left(\mathrm{t}\right)\mathrm{dt}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{f}\left(\mathrm{t}\right)\mathrm{dt}\:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{1}\right)\:=\mathrm{1}+\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{f}\left(\mathrm{t}\right)\mathrm{dt} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *