Menu Close

let-f-x-e-x-2-1-x-2-developp-f-at-integr-serie-




Question Number 39291 by math khazana by abdo last updated on 04/Jul/18
let f(x)=(e^(−x^2 ) /(1+x^2 ))  developp f at integr serie .
$${let}\:{f}\left({x}\right)=\frac{{e}^{−{x}^{\mathrm{2}} } }{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$
Commented by abdo mathsup 649 cc last updated on 05/Jul/18
we have e^(−x^2 ) = Σ_(n=0) ^∞   (((−x^2 )^n )/(n!)) = Σ_(n=0) ^∞  (((−1)^n  x^(2n) )/(n!))  (1/(1+x^2 )) =Σ_(n=0) ^∞  (−1)^n  x^(2n)  ⇒  f(x)= (Σ_(n=0) ^∞  (((−1)^n )/(n!)) x^(2n) )(Σ_(n=0) ^∞  (−1)^n  x^(2n) )  =Σ_(n=0) ^∞  c_n  x^(2n)    with c_n =Σ_(i+j=n)    a_i b_j   =Σ_(i+j=n)   (((−1)^i )/(i!)) (−1)^j   =Σ_(i=0) ^n     (((−1)^i )/(i!)) (−1)^(n−i)  = Σ_(i=0) ^n   (((−1)^n )/(i!)) ⇒  f(x)= Σ_(n=0) ^∞  (−1)^n (Σ_(i=0) ^n  (1/(i!))) x^n   .  Σ
$${we}\:{have}\:{e}^{−{x}^{\mathrm{2}} } =\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−{x}^{\mathrm{2}} \right)^{{n}} }{{n}!}\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} \:{x}^{\mathrm{2}{n}} }{{n}!} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{x}^{\mathrm{2}{n}} \:\Rightarrow \\ $$$${f}\left({x}\right)=\:\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:{x}^{\mathrm{2}{n}} \right)\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{x}^{\mathrm{2}{n}} \right) \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:{c}_{{n}} \:{x}^{\mathrm{2}{n}} \:\:\:{with}\:{c}_{{n}} =\sum_{{i}+{j}={n}} \:\:\:{a}_{{i}} {b}_{{j}} \\ $$$$=\sum_{{i}+{j}={n}} \:\:\frac{\left(−\mathrm{1}\right)^{{i}} }{{i}!}\:\left(−\mathrm{1}\right)^{{j}} \\ $$$$=\sum_{{i}=\mathrm{0}} ^{{n}} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{{i}} }{{i}!}\:\left(−\mathrm{1}\right)^{{n}−{i}} \:=\:\sum_{{i}=\mathrm{0}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{i}!}\:\Rightarrow \\ $$$${f}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \left(\sum_{{i}=\mathrm{0}} ^{{n}} \:\frac{\mathrm{1}}{{i}!}\right)\:{x}^{{n}} \:\:. \\ $$$$\Sigma \\ $$
Commented by abdo mathsup 649 cc last updated on 05/Jul/18
the radius of convergence is R=1
$${the}\:{radius}\:{of}\:{convergence}\:{is}\:{R}=\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *