Menu Close

Question-171160




Question Number 171160 by mokys last updated on 08/Jun/22
Answered by thfchristopher last updated on 09/Jun/22
A. (dy/dx)=3x^2 +9  y=∫(3x^2 +9)dx  =x^3 +9x+C  ∵ y(1)=2,  ∴ 1+9+C=2  ⇒ C=−8  Hence, y=x^3 +9x−8     B. As y=e^(4x) +2e^(−x) ,  ∴ the auxiliary equation will be  (x−4)(x+1)=0  ⇒x^2 +x−4x−4=0  ⇒x^2 −3x−4=0  ∴ The differential equation will be  y′′−3y′−4y=0  ⇒A=−3, B=−4
$$\mathrm{A}.\:\frac{{dy}}{{dx}}=\mathrm{3}{x}^{\mathrm{2}} +\mathrm{9} \\ $$$${y}=\int\left(\mathrm{3}{x}^{\mathrm{2}} +\mathrm{9}\right){dx} \\ $$$$={x}^{\mathrm{3}} +\mathrm{9}{x}+{C} \\ $$$$\because\:{y}\left(\mathrm{1}\right)=\mathrm{2}, \\ $$$$\therefore\:\mathrm{1}+\mathrm{9}+{C}=\mathrm{2} \\ $$$$\Rightarrow\:{C}=−\mathrm{8} \\ $$$$\mathrm{Hence},\:{y}={x}^{\mathrm{3}} +\mathrm{9}{x}−\mathrm{8} \\ $$$$\: \\ $$$$\mathrm{B}.\:\mathrm{As}\:{y}={e}^{\mathrm{4}{x}} +\mathrm{2}{e}^{−{x}} , \\ $$$$\therefore\:\mathrm{the}\:\mathrm{auxiliary}\:\mathrm{equation}\:\mathrm{will}\:\mathrm{be} \\ $$$$\left({x}−\mathrm{4}\right)\left({x}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{x}−\mathrm{4}{x}−\mathrm{4}=\mathrm{0} \\ $$$$\Rightarrow{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}=\mathrm{0} \\ $$$$\therefore\:\mathrm{The}\:\mathrm{differential}\:\mathrm{equation}\:\mathrm{will}\:\mathrm{be} \\ $$$${y}''−\mathrm{3}{y}'−\mathrm{4}{y}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{A}=−\mathrm{3},\:{B}=−\mathrm{4} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *