Menu Close

A-triangle-QRS-is-to-be-constructed-from-a-line-segment-of-lenght-15cm-Construct-the-triangle-using-the-division-of-the-line-segment-into-the-ratio-5-4-3-such-that-QS-and-RS-are-laegest-and-smallest




Question Number 171165 by MathsFan last updated on 09/Jun/22
A triangle QRS is to be constructed from  a line segment of lenght 15cm.   Construct the triangle using the  division of the line segment into the  ratio 5:4:3 such that QS and RS are  laegest and smallest ratio respectively.  circumscribe the triangle by locating  the circumcenter.
$${A}\:{triangle}\:{QRS}\:{is}\:{to}\:{be}\:{constructed}\:{from} \\ $$$${a}\:{line}\:{segment}\:{of}\:{lenght}\:\mathrm{15}{cm}.\: \\ $$$${Construct}\:{the}\:{triangle}\:{using}\:{the} \\ $$$${division}\:{of}\:{the}\:{line}\:{segment}\:{into}\:{the} \\ $$$${ratio}\:\mathrm{5}:\mathrm{4}:\mathrm{3}\:{such}\:{that}\:{QS}\:{and}\:{RS}\:{are} \\ $$$${laegest}\:{and}\:{smallest}\:{ratio}\:{respectively}. \\ $$$${circumscribe}\:{the}\:{triangle}\:{by}\:{locating} \\ $$$${the}\:{circumcenter}. \\ $$
Answered by aleks041103 last updated on 09/Jun/22
From the problem statement  we can say that:  QS=5x, QR=4x, RS=3x  But:  QS^2 =25x^2 =16x^2 +9x^2 =(4x)^2 +(3x)^2   ⇒QS^2 =QR^2 +RS^2   ⇒the △QRS is a right triangle with  hypotenuse QS.  It is known, that the center of the  circumscribed circle is in the middle  of the right triangle′s hypotenuse.  ⇒The answer is the middle of QS.  As for the radius: R=((QS)/2)=(5/2)x  QS+RS+QR=5x+3x+4x=12x=15  ⇒x=((15)/(12))=(5/4)cm  ⇒R=((25)/8)cm=3,125cm
$${From}\:{the}\:{problem}\:{statement} \\ $$$${we}\:{can}\:{say}\:{that}: \\ $$$${QS}=\mathrm{5}{x},\:{QR}=\mathrm{4}{x},\:{RS}=\mathrm{3}{x} \\ $$$${But}: \\ $$$${QS}^{\mathrm{2}} =\mathrm{25}{x}^{\mathrm{2}} =\mathrm{16}{x}^{\mathrm{2}} +\mathrm{9}{x}^{\mathrm{2}} =\left(\mathrm{4}{x}\right)^{\mathrm{2}} +\left(\mathrm{3}{x}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{QS}^{\mathrm{2}} ={QR}^{\mathrm{2}} +{RS}^{\mathrm{2}} \\ $$$$\Rightarrow{the}\:\bigtriangleup{QRS}\:{is}\:{a}\:{right}\:{triangle}\:{with} \\ $$$${hypotenuse}\:{QS}. \\ $$$${It}\:{is}\:{known},\:{that}\:{the}\:{center}\:{of}\:{the} \\ $$$${circumscribed}\:{circle}\:{is}\:{in}\:{the}\:{middle} \\ $$$${of}\:{the}\:{right}\:{triangle}'{s}\:{hypotenuse}. \\ $$$$\Rightarrow{The}\:{answer}\:{is}\:{the}\:{middle}\:{of}\:{QS}. \\ $$$${As}\:{for}\:{the}\:{radius}:\:{R}=\frac{{QS}}{\mathrm{2}}=\frac{\mathrm{5}}{\mathrm{2}}{x} \\ $$$${QS}+{RS}+{QR}=\mathrm{5}{x}+\mathrm{3}{x}+\mathrm{4}{x}=\mathrm{12}{x}=\mathrm{15} \\ $$$$\Rightarrow{x}=\frac{\mathrm{15}}{\mathrm{12}}=\frac{\mathrm{5}}{\mathrm{4}}{cm} \\ $$$$\Rightarrow{R}=\frac{\mathrm{25}}{\mathrm{8}}{cm}=\mathrm{3},\mathrm{125}{cm} \\ $$
Commented by MathsFan last updated on 09/Jun/22
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *