Menu Close

let-f-x-e-x-1-x-if-x-0-and-f-0-1-give-0-1-f-x-dx-at-form-of-serie-




Question Number 40115 by maxmathsup by imad last updated on 15/Jul/18
let f(x)= ((e^x −1)/x)  if x≠0  and f(0)=1  give ∫_0 ^1 f(x)dx at form of serie.
$${let}\:{f}\left({x}\right)=\:\frac{{e}^{{x}} −\mathrm{1}}{{x}}\:\:{if}\:{x}\neq\mathrm{0}\:\:{and}\:{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${give}\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}\:{at}\:{form}\:{of}\:{serie}. \\ $$
Commented by maxmathsup by imad last updated on 21/Jul/18
we have e^x  =Σ_(n=0) ^∞   (x^n /(n!)) =1+Σ_(n=1) ^∞    (x^n /(n!)) ⇒e^x −1 =Σ_(n=1) ^∞  (x^n /(n!)) ⇒forx≠0  ((e^x  −1)/x) =Σ_(n=1) ^∞   (x^(n−1) /(n!)) ⇒∫_0 ^1   ((e^x  −1)/x)dx =Σ_(n=1) ^∞  (1/(n!)) ∫_0 ^1  x^(n−1) dx  =Σ_(n=1) ^∞     (1/(n(n!))) . ⇒  f(x) =Σ_(n=1) ^∞    (1/(n(n!))) .
$${we}\:{have}\:{e}^{{x}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{n}} }{{n}!}\:=\mathrm{1}+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{x}^{{n}} }{{n}!}\:\Rightarrow{e}^{{x}} −\mathrm{1}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}!}\:\Rightarrow{forx}\neq\mathrm{0} \\ $$$$\frac{{e}^{{x}} \:−\mathrm{1}}{{x}}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{x}^{{n}−\mathrm{1}} }{{n}!}\:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{e}^{{x}} \:−\mathrm{1}}{{x}}{dx}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}!}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}−\mathrm{1}} {dx} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\mathrm{1}}{{n}\left({n}!\right)}\:.\:\Rightarrow \\ $$$${f}\left({x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{{n}\left({n}!\right)}\:. \\ $$
Commented by prof Abdo imad last updated on 22/Jul/18
∫_0 ^1 f(x)dx=Σ_(n=1) ^∞   (1/(n(n!)))
$$\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}\left({n}!\right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *