Menu Close

let-A-n-0-1-x-2n-1-ln-x-x-2-1-dx-1-justify-the-existence-of-A-n-2-calculate-A-n-1-A-n-3-prove-that-x-0-1-0-lt-xln-x-x-2-1-lt-1-2-4-find-lim-n-A-n-




Question Number 40158 by maxmathsup by imad last updated on 16/Jul/18
let  A_n = ∫_0 ^1    ((x^(2n+1)  ln(x))/(x^2  −1))dx  1) justify the existence of A_n   2)calculate A_(n+1)  −A_n   3) prove that  x∈]0,1[ ⇒0<((xln(x))/(x^2  −1))<(1/2)    4) find lim_(n→+∞) A_n
$${let}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} \:{ln}\left({x}\right)}{{x}^{\mathrm{2}} \:−\mathrm{1}}{dx} \\ $$$$\left.\mathrm{1}\right)\:{justify}\:{the}\:{existence}\:{of}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right){calculate}\:{A}_{{n}+\mathrm{1}} \:−{A}_{{n}} \\ $$$$\left.\mathrm{3}\left.\right)\:{prove}\:{that}\:\:{x}\in\right]\mathrm{0},\mathrm{1}\left[\:\Rightarrow\mathrm{0}<\frac{{xln}\left({x}\right)}{{x}^{\mathrm{2}} \:−\mathrm{1}}<\frac{\mathrm{1}}{\mathrm{2}}\:\:\right. \\ $$$$\left.\mathrm{4}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} {A}_{{n}} \\ $$
Commented by math khazana by abdo last updated on 19/Jul/18
1) lim_(x→0^+ )    ((x^(2n+1) ln(x))/(x^2 −1)) =−lim_(x→0^+ )    x^(2n+1) ln(x)=0  also lim_(x→1) =lim_(x→1)   (x^(2n+1) /(x+1)) ((lnx)/(x−1)) =(1/2)  because lim_(x→1)   ((ln(x))/(x−1)) =1  ⇒ A_n   exist  2) A_(n+1)  −A_n = ∫_0 ^1   ((x^(2n+3)  ln(x))/(x^2  −1))dx−∫_0 ^1  ((x^(2n+1)  ln(x))/(x^2  −1))dx  = ∫_0 ^1   ((x^(2n+1) (x^2 −1)ln(x))/(x^2  −1))dx  = ∫_0 ^1   x^(2n+1)  ln(x)dx   =[ (1/(2n+2)) x^(2n+2) lnx]_0 ^1   −∫_0 ^1   (1/(2n+2))x^(2n+2)  (dx/x)  =− (1/(2n+2))∫_0 ^1    x^(2n) dx =−(1/((2n+1)(2n+2)))
$$\left.\mathrm{1}\right)\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} {ln}\left({x}\right)}{{x}^{\mathrm{2}} −\mathrm{1}}\:=−{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:{x}^{\mathrm{2}{n}+\mathrm{1}} {ln}\left({x}\right)=\mathrm{0} \\ $$$${also}\:{lim}_{{x}\rightarrow\mathrm{1}} ={lim}_{{x}\rightarrow\mathrm{1}} \:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{{x}+\mathrm{1}}\:\frac{{lnx}}{{x}−\mathrm{1}}\:=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${because}\:{lim}_{{x}\rightarrow\mathrm{1}} \:\:\frac{{ln}\left({x}\right)}{{x}−\mathrm{1}}\:=\mathrm{1}\:\:\Rightarrow\:{A}_{{n}} \:\:{exist} \\ $$$$\left.\mathrm{2}\right)\:{A}_{{n}+\mathrm{1}} \:−{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{3}} \:{ln}\left({x}\right)}{{x}^{\mathrm{2}} \:−\mathrm{1}}{dx}−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} \:{ln}\left({x}\right)}{{x}^{\mathrm{2}} \:−\mathrm{1}}{dx} \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} \left({x}^{\mathrm{2}} −\mathrm{1}\right){ln}\left({x}\right)}{{x}^{\mathrm{2}} \:−\mathrm{1}}{dx} \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{\mathrm{2}{n}+\mathrm{1}} \:{ln}\left({x}\right){dx}\: \\ $$$$=\left[\:\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{2}}\:{x}^{\mathrm{2}{n}+\mathrm{2}} {lnx}\right]_{\mathrm{0}} ^{\mathrm{1}} \:\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{2}}{x}^{\mathrm{2}{n}+\mathrm{2}} \:\frac{{dx}}{{x}} \\ $$$$=−\:\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:{x}^{\mathrm{2}{n}} {dx}\:=−\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{2}\right)} \\ $$
Commented by math khazana by abdo last updated on 19/Jul/18
3) we have 0<x<1  ⇒ xln(x)<0 and x^2  −1<0 ⇒  0< ((xln(x))/(x^2 −1)) let prove that  ((xln(x))/(x^2  −1))<(1/2) let  w(x)=(1/2) −((xln(x))/(x^2 −1)) with 0<x<1  w^′ (x)=−(((lnx+1)(x^2 −1)−xln(x)(2x))/((x^2 −1)^2 ))  =−(((x^2 −1)ln(x) +x^2  −1 −2x^2 ln(x))/((x^2  −1)^2 ))  =−((−(x^2  +1)ln(x) +x^2 −1)/((x^2 −1)^2 )) =((−x^2  +1 +(x^2  +1)ln(x))/((x^(2 ) −1)^2 ))  = ((x^2 (ln(x)−1) +ln(x)+1)/((x^2  −1)^2 ))  any way we have  lim_(x→0^+ )    w(x)=(1/2)>0  lim_(x→1)   w(x)= (1/2)>0 still to prove that w dont  change the sign...
$$\left.\mathrm{3}\right)\:{we}\:{have}\:\mathrm{0}<{x}<\mathrm{1}\:\:\Rightarrow\:{xln}\left({x}\right)<\mathrm{0}\:{and}\:{x}^{\mathrm{2}} \:−\mathrm{1}<\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{0}<\:\frac{{xln}\left({x}\right)}{{x}^{\mathrm{2}} −\mathrm{1}}\:{let}\:{prove}\:{that}\:\:\frac{{xln}\left({x}\right)}{{x}^{\mathrm{2}} \:−\mathrm{1}}<\frac{\mathrm{1}}{\mathrm{2}}\:{let} \\ $$$${w}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:−\frac{{xln}\left({x}\right)}{{x}^{\mathrm{2}} −\mathrm{1}}\:{with}\:\mathrm{0}<{x}<\mathrm{1} \\ $$$${w}^{'} \left({x}\right)=−\frac{\left({lnx}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −\mathrm{1}\right)−{xln}\left({x}\right)\left(\mathrm{2}{x}\right)}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=−\frac{\left({x}^{\mathrm{2}} −\mathrm{1}\right){ln}\left({x}\right)\:+{x}^{\mathrm{2}} \:−\mathrm{1}\:−\mathrm{2}{x}^{\mathrm{2}} {ln}\left({x}\right)}{\left({x}^{\mathrm{2}} \:−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=−\frac{−\left({x}^{\mathrm{2}} \:+\mathrm{1}\right){ln}\left({x}\right)\:+{x}^{\mathrm{2}} −\mathrm{1}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }\:=\frac{−{x}^{\mathrm{2}} \:+\mathrm{1}\:+\left({x}^{\mathrm{2}} \:+\mathrm{1}\right){ln}\left({x}\right)}{\left({x}^{\mathrm{2}\:} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\:\frac{{x}^{\mathrm{2}} \left({ln}\left({x}\right)−\mathrm{1}\right)\:+{ln}\left({x}\right)+\mathrm{1}}{\left({x}^{\mathrm{2}} \:−\mathrm{1}\right)^{\mathrm{2}} }\:\:{any}\:{way}\:{we}\:{have} \\ $$$${lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:{w}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}>\mathrm{0} \\ $$$${lim}_{{x}\rightarrow\mathrm{1}} \:\:{w}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}}>\mathrm{0}\:{still}\:{to}\:{prove}\:{that}\:{w}\:{dont} \\ $$$${change}\:{the}\:{sign}… \\ $$
Commented by math khazana by abdo last updated on 19/Jul/18
4) 0< x^(2n)   ((xln(x))/(x^2 −1))< (x^(2n) /2) ⇒  0< ∫_0 ^1    ((x^(2n+1) ln(x))/(x^2  −1))dx< ∫_0 ^1   (x^(2n) /2)dx ⇒  0< A_n <  (1/(2(2n+1))) →0(n→+∞) so  lim_(n→+∞)  A_n =0
$$\left.\mathrm{4}\right)\:\mathrm{0}<\:{x}^{\mathrm{2}{n}} \:\:\frac{{xln}\left({x}\right)}{{x}^{\mathrm{2}} −\mathrm{1}}<\:\frac{{x}^{\mathrm{2}{n}} }{\mathrm{2}}\:\Rightarrow \\ $$$$\mathrm{0}<\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} {ln}\left({x}\right)}{{x}^{\mathrm{2}} \:−\mathrm{1}}{dx}<\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{\mathrm{2}{n}} }{\mathrm{2}}{dx}\:\Rightarrow \\ $$$$\mathrm{0}<\:{A}_{{n}} <\:\:\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{2}{n}+\mathrm{1}\right)}\:\rightarrow\mathrm{0}\left({n}\rightarrow+\infty\right)\:{so} \\ $$$${lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} =\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *