Menu Close

2-2-x-3-cos-x-2-1-2-4-x-2-dx-




Question Number 69576 by Mr. K last updated on 25/Sep/19
∫_(−2) ^( 2) (x^3 cos(x/2)+(1/2))(√(4−x^2 ))dx
$$\int_{−\mathrm{2}} ^{\:\mathrm{2}} \left({x}^{\mathrm{3}} {cos}\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx} \\ $$
Commented by mathmax by abdo last updated on 26/Sep/19
let I =∫_(−2) ^2 (x^3 cos((x/2))+(1/2))(√(4−x^2 ))dx ⇒  I =∫_(−2) ^2 x^3  cos((x/2))(√(4−x^2 ))dx +(1/2) ∫_(−2) ^2 (√(4−x^2 ))dx  but  ∫_(−2) ^2 x^3 cos((x/2))(√(4−x^2 ))dx =0((function under ∫ is odd) ⇒  I =(1/2) ∫_(−2) ^2 (√(4−x^2 ))dx =∫_0 ^2 (√(4−x^2 ))dx =_(x=2sinθ)   ∫_0 ^(π/2) 2 cosθ (2cosθ)dθ  =4 ∫_0 ^(π/2)  ((1+cos(2θ))/2)dθ = 2 ∫_0 ^(π/2)  dθ  +∫_0 ^(π/2)  cos(2θ)dθ  =π  +(1/2)[sin(2θ)]_0 ^(π/2)  =π +0 =π ⇒ I =π
$${let}\:{I}\:=\int_{−\mathrm{2}} ^{\mathrm{2}} \left({x}^{\mathrm{3}} {cos}\left(\frac{{x}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx}\:\Rightarrow \\ $$$${I}\:=\int_{−\mathrm{2}} ^{\mathrm{2}} {x}^{\mathrm{3}} \:{cos}\left(\frac{{x}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx}\:+\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\mathrm{2}} ^{\mathrm{2}} \sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx}\:\:{but} \\ $$$$\int_{−\mathrm{2}} ^{\mathrm{2}} {x}^{\mathrm{3}} {cos}\left(\frac{{x}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx}\:=\mathrm{0}\left(\left({function}\:{under}\:\int\:{is}\:{odd}\right)\:\Rightarrow\right. \\ $$$${I}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\mathrm{2}} ^{\mathrm{2}} \sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx}\:=\int_{\mathrm{0}} ^{\mathrm{2}} \sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx}\:=_{{x}=\mathrm{2}{sin}\theta} \:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{2}\:{cos}\theta\:\left(\mathrm{2}{cos}\theta\right){d}\theta \\ $$$$=\mathrm{4}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}+{cos}\left(\mathrm{2}\theta\right)}{\mathrm{2}}{d}\theta\:=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{d}\theta\:\:+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left(\mathrm{2}\theta\right){d}\theta \\ $$$$=\pi\:\:+\frac{\mathrm{1}}{\mathrm{2}}\left[{sin}\left(\mathrm{2}\theta\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\pi\:+\mathrm{0}\:=\pi\:\Rightarrow\:{I}\:=\pi \\ $$
Answered by mind is power last updated on 25/Sep/19
∫_(−2) ^2 (x^3 cos((x/2))+(1/2))(√(4−x^2 ))dx=∫_(−2) ^2 x^3 cos((x/2))(√(4−x^2 ))dx+(1/2)∫_(−2) ^2 (√(4−x^2 ))dx  ∫_(−2) ^2 x^3 cos((x/2))(√(4−x^2 ))dx=0  ⇒∫_(−2) ^( 2) (x^3 cos(x/2)+(1/2))(√(4−x^2 ))dx=(1/2)∫_(−2) ^(+2) (√(4−x^2 ))=A  equation ofcircle of centerO(0,0) Radius 2  has equation ..c  x^2 +y^2 =4⇒y=(√(4−x^2 ))  if y≥0  Area of S={(x,y)∈c ∣ x,y≥0}=Area S′{(x,y)∈c∣ x,y≤0}  cause (x,y)→^f (−x,−y)   bijection S and S′  ⇒∫(√(4−x^2 ))dx=(1/2).π.2^2 =2π  ⇒∫_(−2) ^( 2) (x^3 cos(x/2)+(1/2))(√(4−x^2 ))dx=(1/2)∫_(−2) ^(+2) (√(4−x^2 ))=(1/2).2π=π
$$\int_{−\mathrm{2}} ^{\mathrm{2}} \left({x}^{\mathrm{3}} {cos}\left(\frac{{x}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx}=\underset{−\mathrm{2}} {\overset{\mathrm{2}} {\int}}{x}^{\mathrm{3}} {cos}\left(\frac{{x}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx}+\frac{\mathrm{1}}{\mathrm{2}}\underset{−\mathrm{2}} {\overset{\mathrm{2}} {\int}}\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx} \\ $$$$\int_{−\mathrm{2}} ^{\mathrm{2}} {x}^{\mathrm{3}} {cos}\left(\frac{{x}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx}=\mathrm{0} \\ $$$$\Rightarrow\int_{−\mathrm{2}} ^{\:\mathrm{2}} \left({x}^{\mathrm{3}} {cos}\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\mathrm{2}} ^{+\mathrm{2}} \sqrt{\mathrm{4}−{x}^{\mathrm{2}} }={A} \\ $$$${equation}\:{ofcircle}\:{of}\:{centerO}\left(\mathrm{0},\mathrm{0}\right)\:{Radius}\:\mathrm{2} \\ $$$${has}\:{equation}\:..{c}\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{4}\Rightarrow{y}=\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\:\:{if}\:{y}\geqslant\mathrm{0} \\ $$$${Area}\:{of}\:{S}=\left\{\left({x},{y}\right)\in{c}\:\mid\:{x},{y}\geqslant\mathrm{0}\right\}={Area}\:{S}'\left\{\left({x},{y}\right)\in{c}\mid\:{x},{y}\leqslant\mathrm{0}\right\} \\ $$$${cause}\:\left({x},{y}\right)\overset{{f}} {\rightarrow}\left(−{x},−{y}\right)\:\:\:{bijection}\:{S}\:{and}\:{S}' \\ $$$$\Rightarrow\int\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx}=\frac{\mathrm{1}}{\mathrm{2}}.\pi.\mathrm{2}^{\mathrm{2}} =\mathrm{2}\pi \\ $$$$\Rightarrow\int_{−\mathrm{2}} ^{\:\mathrm{2}} \left({x}^{\mathrm{3}} {cos}\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\mathrm{2}} ^{+\mathrm{2}} \sqrt{\mathrm{4}−{x}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}}.\mathrm{2}\pi=\pi \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by Mr. K last updated on 26/Sep/19
Amazing work!
$${Amazing}\:{work}! \\ $$$$ \\ $$$$ \\ $$
Commented by mind is power last updated on 26/Sep/19
thanx
$${thanx}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *