Menu Close

A-parallel-plate-capacitor-of-plate-spacing-1mm-is-charged-to-a-potential-of-50V-Find-the-energy-density-in-the-capacitor-




Question Number 40786 by Necxx last updated on 27/Jul/18
A parallel plate capacitor of plate  spacing, 1mm is charged to a potential  of 50V.Find the energy density in  the capacitor
$${A}\:{parallel}\:{plate}\:{capacitor}\:{of}\:{plate} \\ $$$${spacing},\:\mathrm{1}{mm}\:{is}\:{charged}\:{to}\:{a}\:{potential} \\ $$$${of}\:\mathrm{50}{V}.{Find}\:{the}\:{energy}\:{density}\:{in} \\ $$$${the}\:{capacitor} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Jul/18
energy=(1/2)CV^2    energy density=(((1/2)CV^2 )/(Ad))  C=capscitance  V=potential difference  A=area of plate of cspacitor  d=separation between plate  C=((ε_0 A)/d)  energy density=(1/2)×((((ε_0 A)/d).V^2 )/(Ad))     =(1/2).ε_0 .((V^2  )/d^2 )
$${energy}=\frac{\mathrm{1}}{\mathrm{2}}{CV}\:^{\mathrm{2}} \: \\ $$$${energy}\:{density}=\frac{\frac{\mathrm{1}}{\mathrm{2}}{CV}\:^{\mathrm{2}} }{{Ad}}\:\:{C}={capscitance} \\ $$$${V}={potential}\:{difference} \\ $$$${A}={area}\:{of}\:{plate}\:{of}\:{cspacitor} \\ $$$${d}={separation}\:{between}\:{plate} \\ $$$${C}=\frac{\epsilon_{\mathrm{0}} {A}}{{d}} \\ $$$${energy}\:{density}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\frac{\epsilon_{\mathrm{0}} {A}}{{d}}.{V}\:^{\mathrm{2}} }{{Ad}} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}.\epsilon_{\mathrm{0}} .\frac{{V}\:^{\mathrm{2}} \:}{{d}^{\mathrm{2}} } \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *