Menu Close

prove-that-for-x-lt-1-1-1-x-n-0-1-n-C-2n-n-4-k-x-2k-




Question Number 40895 by abdo.msup.com last updated on 28/Jul/18
prove that for ∣x∣<1  (1/( (√(1+x)))) =Σ_(n=0) ^∞   (((−1)^n  C_(2n) ^n )/4^k ) x^(2k)
$${prove}\:{that}\:{for}\:\mid{x}\mid<\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}}}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{C}_{\mathrm{2}{n}} ^{{n}} }{\mathrm{4}^{{k}} }\:{x}^{\mathrm{2}{k}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *