Menu Close

Question-41038




Question Number 41038 by Tawa1 last updated on 31/Jul/18
Commented by tanmay.chaudhury50@gmail.com last updated on 31/Jul/18
about question number 25)  there is eight corner...at each corner three face  merge...number at any corner share by three  face..target to find sum of four number such  that each face give same value...the sumtotal  can not devide 45...  attaching a paper cut...when join make a cube  each corner mark by alphbet...every feace with  proper mark attached...  trying to reach the goal...
$$\left.{about}\:{question}\:{number}\:\mathrm{25}\right) \\ $$$${there}\:{is}\:{eight}\:{corner}…{at}\:{each}\:{corner}\:{three}\:{face} \\ $$$${merge}…{number}\:{at}\:{any}\:{corner}\:{share}\:{by}\:{three} \\ $$$${face}..{target}\:{to}\:{find}\:{sum}\:{of}\:{four}\:{number}\:{such} \\ $$$${that}\:{each}\:{face}\:{give}\:{same}\:{value}…{the}\:{sumtotal} \\ $$$${can}\:{not}\:{devide}\:\mathrm{45}… \\ $$$${attaching}\:{a}\:{paper}\:{cut}…{when}\:{join}\:{make}\:{a}\:{cube} \\ $$$${each}\:{corner}\:{mark}\:{by}\:{alphbet}…{every}\:{feace}\:{with} \\ $$$${proper}\:{mark}\:{attached}… \\ $$$${trying}\:{to}\:{reach}\:{the}\:{goal}… \\ $$$$ \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 31/Jul/18
Commented by Tawa1 last updated on 31/Jul/18
Please what will be the final answer. God bless you. thanks for your help
$$\mathrm{Please}\:\mathrm{what}\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{final}\:\mathrm{answer}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}.\:\mathrm{thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{help} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 31/Jul/18
6+5+3+1=15 this cobination not allow  8+4+2+1  not allowed  7+5+2+1 not allowed  9+3+2+1not allowed  6+5+3+1 not allowrd  7+4+3+1 not allowed  7+5+2+1 not allowed    A=   B=    C=   D=  face value=  A=    D=   E=  F=  A=   B=   F=   G=  B= C=  G=  H=  A=  B=  C=  D=  E=  F=  G=  H=  observing the combination of number whose  sumtotal is 15...it is observed that every time  one number is appearing and that is 1   it seems that the required number is 1  ....leg me try more to find the face value and  combination...
$$\mathrm{6}+\mathrm{5}+\mathrm{3}+\mathrm{1}=\mathrm{15}\:{this}\:{cobination}\:{not}\:{allow} \\ $$$$\mathrm{8}+\mathrm{4}+\mathrm{2}+\mathrm{1}\:\:{not}\:{allowed} \\ $$$$\mathrm{7}+\mathrm{5}+\mathrm{2}+\mathrm{1}\:{not}\:{allowed} \\ $$$$\mathrm{9}+\mathrm{3}+\mathrm{2}+\mathrm{1}{not}\:{allowed} \\ $$$$\mathrm{6}+\mathrm{5}+\mathrm{3}+\mathrm{1}\:{not}\:{allowrd} \\ $$$$\mathrm{7}+\mathrm{4}+\mathrm{3}+\mathrm{1}\:{not}\:{allowed} \\ $$$$\mathrm{7}+\mathrm{5}+\mathrm{2}+\mathrm{1}\:{not}\:{allowed} \\ $$$$ \\ $$$${A}=\:\:\:{B}=\:\:\:\:{C}=\:\:\:{D}=\:\:{face}\:{value}= \\ $$$${A}=\:\:\:\:{D}=\:\:\:{E}=\:\:{F}= \\ $$$${A}=\:\:\:{B}=\:\:\:{F}=\:\:\:{G}= \\ $$$${B}=\:{C}=\:\:{G}=\:\:{H}= \\ $$$${A}= \\ $$$${B}= \\ $$$${C}= \\ $$$${D}= \\ $$$${E}= \\ $$$${F}= \\ $$$${G}= \\ $$$${H}= \\ $$$${observing}\:{the}\:{combination}\:{of}\:{number}\:{whose} \\ $$$${sumtotal}\:{is}\:\mathrm{15}…{it}\:{is}\:{observed}\:{that}\:{every}\:{time} \\ $$$${one}\:{number}\:{is}\:{appearing}\:{and}\:{that}\:{is}\:\mathrm{1}\: \\ $$$${it}\:{seems}\:{that}\:{the}\:{required}\:{number}\:{is}\:\mathrm{1} \\ $$$$….{leg}\:{me}\:{try}\:{more}\:{to}\:{find}\:{the}\:{face}\:{value}\:{and} \\ $$$${combination}… \\ $$$$ \\ $$
Commented by Tawa1 last updated on 31/Jul/18
Waiting sir. Thanks for your time. God bless you
$$\mathrm{Waiting}\:\mathrm{sir}.\:\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you} \\ $$
Answered by MJS last updated on 01/Aug/18
qu. 25  sum on 1 face=s  sum on 6 faces=6s  used numbers: a b c d e f g h  each number counts on 3 faces  3(a+b+c+d+e+f+g+h)=6s  a+b+c+d+e+f+g+h=2s  ⇒ sum of used numbers is even  1+2+3+4+5+6+7+8+9=45  ⇒ left−off number must be uneven    45−1=44 ⇒ s=22  possible faces  2389  2479  2569  2578  3469  3478  3568  4567  possible combinations of opposite faces  2389  4567  2479  3568  2569  3478  2578  3469  possible cubes  determinant (((2839)),((5746)))  determinant (((2839)),((7564)))    45−3=42 ⇒ s=21  possible faces  1479  1569  1578  2469  2478  2568  possible combinations of opposite faces  1479  2568  1569  2478  1578  2469  possible cube  determinant (((1749)),((5826)))     45−5=40 ⇒ s=20  possible faces  1289  1379  1469  1478  2369  2378  2468  3467  possible combinations of opposite faces  1289  3467  1379  2468  1469  2378  1478  2369  possible cubes  determinant (((1829)),((4736)))  determinant (((1829)),((7463)))    45−7=38 ⇒ s=19  possible faces  1369  1459  1468  2359  2368  2458  possible combinations of opposite faces  1369  2458  1459  2368  1468  2359  possible cube  determinant (((1639)),((4825)))    45−9=36 ⇒ s=18  possible faces  1278  1368  1458  1467  2358  2367  2457  3456  possible combinations of opposite faces  1278  3456  1368  2457  1458  2367  1467  2358  possible cubes  determinant (((1728)),((4635)))  determinant (((1728)),((6453)))    ⇒ leave off any uneven number and you can  form a cube with a face−sum not dividing 45  the question is over−defined
$${qu}.\:\mathrm{25} \\ $$$$\mathrm{sum}\:\mathrm{on}\:\mathrm{1}\:\mathrm{face}={s} \\ $$$$\mathrm{sum}\:\mathrm{on}\:\mathrm{6}\:\mathrm{faces}=\mathrm{6}{s} \\ $$$$\mathrm{used}\:\mathrm{numbers}:\:{a}\:{b}\:{c}\:{d}\:{e}\:{f}\:{g}\:{h} \\ $$$$\mathrm{each}\:\mathrm{number}\:\mathrm{counts}\:\mathrm{on}\:\mathrm{3}\:\mathrm{faces} \\ $$$$\mathrm{3}\left({a}+{b}+{c}+{d}+{e}+{f}+{g}+{h}\right)=\mathrm{6}{s} \\ $$$${a}+{b}+{c}+{d}+{e}+{f}+{g}+{h}=\mathrm{2}{s} \\ $$$$\Rightarrow\:\mathrm{sum}\:\mathrm{of}\:\mathrm{used}\:\mathrm{numbers}\:\mathrm{is}\:\mathrm{even} \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{5}+\mathrm{6}+\mathrm{7}+\mathrm{8}+\mathrm{9}=\mathrm{45} \\ $$$$\Rightarrow\:\mathrm{left}−\mathrm{off}\:\mathrm{number}\:\mathrm{must}\:\mathrm{be}\:\mathrm{uneven} \\ $$$$ \\ $$$$\mathrm{45}−\mathrm{1}=\mathrm{44}\:\Rightarrow\:{s}=\mathrm{22} \\ $$$$\mathrm{possible}\:\mathrm{faces} \\ $$$$\mathrm{2389}\:\:\mathrm{2479}\:\:\mathrm{2569}\:\:\mathrm{2578}\:\:\mathrm{3469}\:\:\mathrm{3478}\:\:\mathrm{3568}\:\:\mathrm{4567} \\ $$$$\mathrm{possible}\:\mathrm{combinations}\:\mathrm{of}\:\mathrm{opposite}\:\mathrm{faces} \\ $$$$\mathrm{2389}\:\:\mathrm{4567} \\ $$$$\mathrm{2479}\:\:\mathrm{3568} \\ $$$$\mathrm{2569}\:\:\mathrm{3478} \\ $$$$\mathrm{2578}\:\:\mathrm{3469} \\ $$$$\mathrm{possible}\:\mathrm{cubes}\:\begin{vmatrix}{\mathrm{2839}}\\{\mathrm{5746}}\end{vmatrix}\:\begin{vmatrix}{\mathrm{2839}}\\{\mathrm{7564}}\end{vmatrix} \\ $$$$ \\ $$$$\mathrm{45}−\mathrm{3}=\mathrm{42}\:\Rightarrow\:{s}=\mathrm{21} \\ $$$$\mathrm{possible}\:\mathrm{faces} \\ $$$$\mathrm{1479}\:\:\mathrm{1569}\:\:\mathrm{1578}\:\:\mathrm{2469}\:\:\mathrm{2478}\:\:\mathrm{2568} \\ $$$$\mathrm{possible}\:\mathrm{combinations}\:\mathrm{of}\:\mathrm{opposite}\:\mathrm{faces} \\ $$$$\mathrm{1479}\:\:\mathrm{2568} \\ $$$$\mathrm{1569}\:\:\mathrm{2478} \\ $$$$\mathrm{1578}\:\:\mathrm{2469} \\ $$$$\mathrm{possible}\:\mathrm{cube}\:\begin{vmatrix}{\mathrm{1749}}\\{\mathrm{5826}}\end{vmatrix}\: \\ $$$$ \\ $$$$\mathrm{45}−\mathrm{5}=\mathrm{40}\:\Rightarrow\:{s}=\mathrm{20} \\ $$$$\mathrm{possible}\:\mathrm{faces} \\ $$$$\mathrm{1289}\:\:\mathrm{1379}\:\:\mathrm{1469}\:\:\mathrm{1478}\:\:\mathrm{2369}\:\:\mathrm{2378}\:\:\mathrm{2468}\:\:\mathrm{3467} \\ $$$$\mathrm{possible}\:\mathrm{combinations}\:\mathrm{of}\:\mathrm{opposite}\:\mathrm{faces} \\ $$$$\mathrm{1289}\:\:\mathrm{3467} \\ $$$$\mathrm{1379}\:\:\mathrm{2468} \\ $$$$\mathrm{1469}\:\:\mathrm{2378} \\ $$$$\mathrm{1478}\:\:\mathrm{2369} \\ $$$$\mathrm{possible}\:\mathrm{cubes}\:\begin{vmatrix}{\mathrm{1829}}\\{\mathrm{4736}}\end{vmatrix}\:\begin{vmatrix}{\mathrm{1829}}\\{\mathrm{7463}}\end{vmatrix} \\ $$$$ \\ $$$$\mathrm{45}−\mathrm{7}=\mathrm{38}\:\Rightarrow\:{s}=\mathrm{19} \\ $$$$\mathrm{possible}\:\mathrm{faces} \\ $$$$\mathrm{1369}\:\:\mathrm{1459}\:\:\mathrm{1468}\:\:\mathrm{2359}\:\:\mathrm{2368}\:\:\mathrm{2458} \\ $$$$\mathrm{possible}\:\mathrm{combinations}\:\mathrm{of}\:\mathrm{opposite}\:\mathrm{faces} \\ $$$$\mathrm{1369}\:\:\mathrm{2458} \\ $$$$\mathrm{1459}\:\:\mathrm{2368} \\ $$$$\mathrm{1468}\:\:\mathrm{2359} \\ $$$$\mathrm{possible}\:\mathrm{cube}\:\begin{vmatrix}{\mathrm{1639}}\\{\mathrm{4825}}\end{vmatrix} \\ $$$$ \\ $$$$\mathrm{45}−\mathrm{9}=\mathrm{36}\:\Rightarrow\:{s}=\mathrm{18} \\ $$$$\mathrm{possible}\:\mathrm{faces} \\ $$$$\mathrm{1278}\:\:\mathrm{1368}\:\:\mathrm{1458}\:\:\mathrm{1467}\:\:\mathrm{2358}\:\:\mathrm{2367}\:\:\mathrm{2457}\:\:\mathrm{3456} \\ $$$$\mathrm{possible}\:\mathrm{combinations}\:\mathrm{of}\:\mathrm{opposite}\:\mathrm{faces} \\ $$$$\mathrm{1278}\:\:\mathrm{3456} \\ $$$$\mathrm{1368}\:\:\mathrm{2457} \\ $$$$\mathrm{1458}\:\:\mathrm{2367} \\ $$$$\mathrm{1467}\:\:\mathrm{2358} \\ $$$$\mathrm{possible}\:\mathrm{cubes}\:\begin{vmatrix}{\mathrm{1728}}\\{\mathrm{4635}}\end{vmatrix}\:\begin{vmatrix}{\mathrm{1728}}\\{\mathrm{6453}}\end{vmatrix} \\ $$$$ \\ $$$$\Rightarrow\:\mathrm{leave}\:\mathrm{off}\:\mathrm{any}\:\mathrm{uneven}\:\mathrm{number}\:\mathrm{and}\:\mathrm{you}\:\mathrm{can} \\ $$$$\mathrm{form}\:\mathrm{a}\:\mathrm{cube}\:\mathrm{with}\:\mathrm{a}\:\mathrm{face}−\mathrm{sum}\:\mathrm{not}\:\mathrm{dividing}\:\mathrm{45} \\ $$$$\mathrm{the}\:\mathrm{question}\:\mathrm{is}\:\mathrm{over}−\mathrm{defined} \\ $$
Commented by Tawa1 last updated on 01/Aug/18
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *