Menu Close

let-u-n-1-1-3-1-2-3-1-n-3-1-prove-that-9-8-1-2-n-1-2-u-n-3-2-1-2n-2-2-prove-that-n-N-1-u-n-3-2-3-prove-that-u-n-is-convegente-




Question Number 41512 by maxmathsup by imad last updated on 08/Aug/18
let  u_n =(1/1^3 ) +(1/2^3 ) +....+(1/n^3 )  1)prove that   (9/8) −(1/(2(n+1)^2 )) ≤ u_n ≤ (3/2) −(1/(2n^2 ))  2) prove that ∀ n∈N^★    1≤u_n ≤ (3/2)  3) prove that (u_n )is convegente .
$${let}\:\:{u}_{{n}} =\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{3}} }\:+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }\:+….+\frac{\mathrm{1}}{{n}^{\mathrm{3}} } \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:\:\:\frac{\mathrm{9}}{\mathrm{8}}\:−\frac{\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:\leqslant\:{u}_{{n}} \leqslant\:\frac{\mathrm{3}}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\forall\:{n}\in{N}^{\bigstar} \:\:\:\mathrm{1}\leqslant{u}_{{n}} \leqslant\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\left.\mathrm{3}\right)\:{prove}\:{that}\:\left({u}_{{n}} \right){is}\:{convegente}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *