Menu Close

O-circumcenter-I-incenter-R-circumradii-r-radii-a-b-c-d-sides-in-a-bicenteric-quadrilateral-Prove-that-20I-2-r-cyc-4R-2-a-2-2-R-2-2r-2-




Question Number 173216 by Shrinava last updated on 08/Jul/22
O-circumcenter , I-incenter, R-circumradii,  r-radii, a,b,c,d-sides in a bicenteric  quadrilateral. Prove that:  20I^2  + r Σ_(cyc)  (√(4R^2  − a^2 )) = 2(R^2  + 2r^2 )
$$\mathrm{O}-\mathrm{circumcenter}\:,\:\mathrm{I}-\mathrm{incenter},\:\mathrm{R}-\mathrm{circumradii}, \\ $$$$\mathrm{r}-\mathrm{radii},\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}-\mathrm{sides}\:\mathrm{in}\:\mathrm{a}\:\mathrm{bicenteric} \\ $$$$\mathrm{quadrilateral}.\:\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{20I}^{\mathrm{2}} \:+\:\mathrm{r}\:\underset{\boldsymbol{\mathrm{cyc}}} {\sum}\:\sqrt{\mathrm{4R}^{\mathrm{2}} \:−\:\mathrm{a}^{\mathrm{2}} }\:=\:\mathrm{2}\left(\mathrm{R}^{\mathrm{2}} \:+\:\mathrm{2r}^{\mathrm{2}} \right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *